# Solar-Geophysical Data prompt reports Data for May and June 2001 Explanation of Data Reports Issued as Number 515 (Supplement) July 1987 ## SGD On-line Edition: http://www.ngdc.noaa.gov/stp -- Click on SGD Online SGD PDF version: http://ftp.ngdc.noaa.gov/STP/SOLAR\_DATA **NGDC On-Line Addresses:** World-Wide Web: Gopher http://www.ngdc.noaa.gov Anonymous FTP: gopher.ngdc.noaa.gov ftp.ngdc.noaa.gov #### U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary #### NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Scott B. Gudes, Acting Under Secretary/Administrator NATIONAL ENVIRONMENTAL SATELLITE, DATA, AND INFORMATION SERVICE Gregory W. Withee, Assistant Administrator JULY 2001 NUMBER 683 - Part I # Solar-Geophysical Data prompt reports Data for May and June 2001 International Standard Serial Number: 0038-0911 Library of Congress Catalog Number: 79-640375 //r81 ## NATIONAL GEOPHYSICAL DATA CENTER Michael S. Loughridge, Director Boulder, Colorado Subscription information is on the inside back cover. ## **SOLAR-GEOPHYSICAL DATA** ## Number 683 ## (Issued in Two Parts) Editor: Helen E. Coffey Chief: Herbert W. Kroehl Solar-Terrestrial Physics Division Staff: Edward H. Erwin ## **CONTENTS** | PART I (PROMPT REPORTS) | Page | |--------------------------------------------------|------------| | DETAILED INDEX FOR 2000-2001 DATA FOR JUNE 2001 | 2<br>3- 43 | | Data for May 2001 | 45-167 | | PART II (COMPREHENSIVE REPORTS) | Page | | DETAILED INDEX FOR 2000-2001 | 2 | | Data for January 2001 | 3-34 | #### DETAILED INDEX OF OBSERVATIONS PUBLISHED IN SOLAR-GEOPHYSICAL DATA | CODE | KIND OF OBSERVATION | NOV 00 | DEC | JAN 01 | FEB | MAR | APR | MAY | JUN | |----------------|----------------------------------------------------------------------------|--------------------|------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------------------| | A | SOLAR AND INTERPLANETARY | | | | | | | | | | A.1 | Sunspot Drawings | 677A 52 | 678A 54 | 679A 44 | 680A 56 | 681A 52 | 682A 48 | 683A 52 | | | A.2aa | International Provisional Sunspot Numbers | 676A 26 | 677A 29 | 678A 28 | 679A 26 | 680A 29 | 681A 26 | 682A 27 | 683A 27 | | A.2c<br>A.3a | American Sunspot Numbers Mt. Wilson Magnetograms | 676A 26<br>677A 52 | 677A 29<br>678A 54 | 678A 28<br>679A 44 | 679A 26<br>680A 56 | 680A 29<br>681A 52 | 681A 26<br>682A 48 | 682A 27<br>683A 52 | 683A 27 | | A.3b | Sunspot Mag Class and Regions | 677A 99 | 678A104 | 679A 92 | 680A 98 | 681A100 | 682A 95 | 683A102 | | | A.3c | Kitt Peak Magnetograms | 677A 52 | 678A 54 | 679A 44 | 680A 56 | 681A 52 | 682A 48 | 683A 52 | | | A.3d | Mean Solar Magnetic Field (Stanford) | 676A 39 | 677A 41 | 678A 39 | 679A 33 | 680A 45 | 681A 41 | 682A 37 | 683A 41 | | A.3e | Stanford Magnetograms | 677A 52 | 678A 54 | 679A 44 | 680A 56 | 681A 52 | 682A 48 | 683A 52 | | | A.4 | H-alpha Filtergrams | 677A 52 | 678A 54 | 679A 44 | 680A 56 | 681A 52 | 682A 48 | 683A 52 | | | A.5d | Photometric Ca II Faculae (San Fernando) | Jan 92-Dec | | | 8 in 663B 66 | | | | | | A.6c | Stanford Solar Mag Field Synoptic Maps | 677A 46 | 678A 42 | 679A 38 | 680A 50 | 681A 46 | 682A 42 | 683A 46 | | | A.6d | Kitt Peak Solar Mag Field Synoptic Maps | 677A 51 | 678A 52 | 679A 43 | 680A 55 | 681A 51 | 682A 47 | 683A 51 | | | A.6f | Active Prominences and Filaments | 681B 40<br>677A 48 | 682B 38<br>678A 46 | 683B 33<br>679A 40 | 680A 52 | 681A 48 | 682A 44 | 683A 48 | | | A.6g<br>A.6h | Sac Peak Coronal Line Synoptic Maps Photometric White Light (San Fernando) | | 630B 32; 19 | | | 001A 40 | 002A 44 | 003A 40 | | | A.7h | Coronal Line Emission (Sac Peak) | 677A 52 | 678A 54 | 679A 44 | 680A 56 | 681A 52 | 682A 48 | 683A 52 | | | A.7j | Coronal Hole Daily Maps (NSO/KP) | 677A 90 | 678A 93 | 679A 83 | 680A 91 | 681A 91 | 682A 86 | 683A 91 | | | A.7k | Coronal Index (Slovak Academy) | | in 644B 28 | | | | | | | | A.8aa | 2800 MHz- Solar Flux (Penticton) | 676A 26 | 677A 29 | 678A 28 | 679A 26 | 680A 29 | 681A 26 | 682A 27 | 683A 27 | | A.8ac | 2800 MHz- Adj. Solar Flux (Penticton) | 676A 26 | 677A 29 | 678A 28 | 679A 26 | 680A 29 | 681A 26 | 682A 27 | 683A 27 | | A.8g | Adjusted Daily Solar Fluxes (Learmonth) | 676A 26 | 677A 29 | 678A 28 | 679A 26 | 680A 29 | 681A 26 | 682A 27 | 683A 27 | | A.10g | Nancay Radioheliograph - 164&327 MHz | 677A143 | 678A140 | 679A113 | 680A126 | 681A142 | 682A144 | 683A147 | | | A.10h | Nobeyama Radioheliograph Maps - 17 GHz | 677A 94 | 678A 98 | 679A 86 | 680A 93 | 681A 95 | 682A 90 | 683A 96 | | | A.11g | Solar X-ray GOES (graphs/event table) | 681B 32 | 682B 28<br>c 88 in 566B | 683B 24 | | | | | | | A.11k<br>A.11l | Solar UV NOAA-9<br>Solar UV NIMBUS7 | • | t 84 in 542B 8 | | | | | | | | A.11m | Solar UV SOLSTICE (UARS) | | 94 in 607B | | | | | | | | A.11n | Solar YOHKOH Soft X-ray Images | 677A 82 | 678A 85 | 679A 75 | 680A 84 | 681A 83 | 682A 78 | 683A 83 | | | A.11o | Solar UV SUSIM (UARS) | | 97 in 629B 3 | 30 | | | | | | | A.12g | Solar Particles (GOES-7) | 676A 4 | 677A 4 | 678A 4 | 679A 4 | 680A 4 | 681A 4 | 682A 4 | 683A 4 | | A.12h | Interplanetary Particles (SAMPEX) | Jul 95-Dec | 96 in 632B 2 | 2; Jan-Dec 9 | 7 in 647B 33 | | | | | | A.13e | Solar Plasma (IMP-8) | 681B 41 | 682B 39 | 683B 34 | | | | | | | A.16c | ERBS, NOAA-9 & -10 Solar Irradiance | | 84-Jun 00 in | | | | | | | | A.16d | UARS Solar Irradiance | | 97 in 642B | | | | | | | | A.16e<br>A.17c | VIRGO/SOHO Solar Irradiance<br>Inferred Interplanetary Mag Field | | 00 in 678B ∙<br>data in 542∆ | | ın 94 in 611A | 118 | | | | | A.170<br>A.17 | IMP-8 Interplanetary Mag Field | | | | 111 34 111 01 17 | 110 | | | | | C. | SOLAR FLARE-ASSOCIATED EVENTS | | | | | | | | | | C.1a | H-alpha Flares | 676A 29 | 677A 32 | 678A 31 | 679A 29 | 680A 32 | 681A 29 | 682A 30 | 683A 30 | | C.1ba | H-alpha Flare Groups | 681B 4 | 682B 4 | 683B 4 | | | | | | | C.1d | Flare Patrol Obsevations | 681B 14 | 682B 15 | 683B 12 | | | | | | | C.1h | H-alpha Flare Index (ImpxDur) | | | - | ct 96 in 635B | 24; Jan 96-D | ec 98 in 6651 | 3 63 | | | C.3 | Radio Bursts Fixed Frequency | 681B 16 | 682B 17 | 683B 14 | | | | | | | C.3 | Radio Bursts Fixed Frequency Selected | 676A 36 | 677A 40 | 678A 37 | 679A 32 | 680A 42 | 681A 37 | 682A 36 | 683A 39 | | C.4 | Radio Bursts Spectral | 677A126 | 678A125 | 679A115 | 680A119 | 681A127 | 682A120 | 683A129<br>683A127 | | | C.6<br>D. | Sudden lonospheric Disturbances<br>GEOMAGNETIC EVENTS | 677A124 | 678A123 | 679A113 | 680A118 | 681A123 | 682A117 | 003A121 | | | D.<br>D.1a | Geomagnetic Indices | _<br>677A153 | 678A150 | 679A139 | 680A133 | 681A150 | 682A156 | 683A158 | *************************************** | | D.1a<br>D.1ba | 27-day Chart of Kp Indices | 679A142 | 679A142 | 679A141 | 680A135 | 681A152 | 682A158 | 683A160 | | | D.1cb | Monthly Mean aa Indices | 677A156 | 678A153 | 679A143 | 680A136 | 681A153 | 682A159 | 683A161 | | | D.1d | Principal Magnetic Storms | 677A161 | 678A158 | 679A150 | 680A141 | 681A158 | 682A164 | 683A166 | | | D.1f | Sudden Commencements/Flare Effects | 677A162 | 678A159 | 679A151 | 680A142 | 681A159 | 682A165 | 683A167 | | | D.1g | Equatorial Indices Dst | 677A158 | 678A155 | 679A147 | 680A138 | 681A155 | 682A162 | 683A163 | | | D.1i | Polar Cap (PC) Index | 677A159 | 678A156 | 679A148 | 680A139 | 681A156 | 682A161 | 683A164 | | | F. | COSMIC RAYS | _ | | | | | | | | | F.1b | Cosmic Ray Neutron Cts (Climax) | 677A145 | 678A142 | 679A131 | 680A128 | 681A145 | 682A148 | 683A150 | | | F.1h | Cosmic Ray Neutron Cts (Thule) | 677A145 | 678A142 | 679A131 | 680A128 | 681A145 | 682A148 | 683A150 | | | F.1i | Cosmic Ray Neutron Cts (Kiel) | 677A145 | 678A142 | 679A131 | 680A128 | 681A145 | 682A148 | 683A150 | | | F.1n<br>F.1m | Cosmic Ray Neutron Cts (Beijing) Cosmic Ray Neutron Cts (Haleakala) | 677A145<br>677A145 | 678A142<br>678A142 | 679A131<br>679A131 | 680A128<br>680A128 | 681A145<br>681A145 | 682A148<br>682A148 | 683A150<br>683A150 | | | F.1m<br>F.1o | Cosmic Ray Neutron Cts (Haleakala) Cosmic Ray Neutron Cts (Moscow) | 677A145 | 678A142 | 679A131 | 680A128 | 681A145 | 682A148 | 683A150 | | | F.10<br>F.1p | Cosmic Ray Neutron Cts (Moscow) Cosmic Ray Neutron Cts (Calgary) | 677A145 | 678A142 | 679A131 | 680A128 | 681A145 | 682A148 | 683A150 | | | F.1r | Cosmic Ray Neutron Cts (Goose Bay) | 5,(110 | J. J. 11 12 | 0.0,1101 | | | | 222, 1100 | | | Н. | MISCELLANEOUS | | | | | | | | | | H.60 | ISES Alert Periods | 676A 19 | 677A 20 | 678A 20 | 679A 18 | 680A 20 | 681A 19 | 682A 20 | 683A 19 | | | "677A 52" under Nov 00, for example, means | | | | | | | | ert Land | The entry "677A 52" under Nov 00, for example, means that the sunspot drawings for Nov 00 appear in <u>SOLAR-GEOPHYSICAL DATA</u> No. 677, Part I, and that they begin on page 52. "A" denotes Part I and "B", Part II. Blanks indicate data not yet received and dashes mark unavailable data. ## **CONTENTS** **Prompt Reports** Number 683 Part I ## DATA FOR JUNE 2001 | | Page | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | SOLAR-TERRESTRIAL ENVIRONMENT Plots of GOES Satellite X-rays, Particles and Magnetometer Data with ground-based Goose Bay Neutron Monitor Cosmic Rays | 4-18 | | ISES ALERT PERIODS (Advance and Worldwide) | 19-24 | | SOLAR ACTIVITY INDICES Daily Sunspot Numbers (12 Months) Daily 2800 MHz Solar Flux (12 Months) Daily Solar Indices (Sunspot Numbers and Solar Flux) Smoothed Observed and Predicted Sunspot Numbers Graph and Table of Monthly Mean Sunspot Numbers 1950-present | 25<br>26<br>27<br>28<br>29 | | SOLAR FLARES H-alpha Solar Flares Intervals of No Flare Patrol (See 6-month late chart in Comprehensive Reports.) | 30-38 | | SOLAR RADIO EMISSION Selected Fixed Frequency Events Selected Bursts (None reported.) | 39-40 | | STANFORD MEAN SOLAR MAGNETIC FIELD Table Graph | 41<br>42 | | GOES-8 Daily Electron Fluence | 43 | JUNE | Julian | Date<br>of | Date<br>of | Wolf | 10-cm<br>Solar | Α- | Rgn | Loca | tion | F | lares | | Date<br>of | Region | | |--------|------------|------------|------|----------------|-------|--------------|------------|-------------|--------|-------|--------|------------|---------|-----------------------------| | Day | Issue | 0bs | No. | Flux | index | No. | Lat | Lon | Opt | М | X | Fcst | Fcst(1) | Geoadvice(1) | | 152 | 01 | 31 | 93 | 133 | 5 | 9467 | s06 | W81 | 0 | 0 | 0 | 01 | Q | SOL: Eruptive | | | | | | | | 9468 | N06 | W76 | 0 | 0 | 0 | 01 | Q | MAG: Quiet | | | | | | | | 9472 | N14 | W44 | 0 | 0 | 0 | 01 | Q | PRO: Quiet | | | | | | | | 9474 | N20 | W14 | 0 | 0 | 0 | 01 | Q | | | | | | | | | 9475 | N18 | E06 | 0 | 0 | 0 | 01 | Q | | | | | | | | | 9481<br>9482 | N18<br>S16 | W84<br>E32 | 1<br>0 | 0 | 0<br>0 | 01<br>01 | Q<br>Q | | | | | | | | | | | | - | _ | | | | _ | | 153 | 02 | 01 | 120 | 133 | 9 | 9468<br>9474 | N07<br>N20 | W87<br>W27 | 0<br>0 | 0 | 0<br>0 | 02<br>02 | Q<br>Q | SOL: Eruptive<br>MAG: Quiet | | | | | | | | 9475 | N19 | W08 | 1 | Ö | Ö | 02 | Q | PRO: Quiet | | | | | | | | 9477 | S16 | W43 | ö | Ö | Ö | 02 | Q | TRO. QUICE | | | | | | | | 9481 | N18 | w98 | 1 | Ö | ŏ | 02 | ã | | | | | | | | | 9482 | s13 | E16 | ò | Ö | ŏ | 02 | Q | | | | | | | | | 9483 | S22 | W59 | 3 | Ö | Ŏ | 02 | Q | | | | | | | | | 9484 | s08 | E36 | Ō | Ö | Ö | 02 | Q | | | | | | | | | 9485 | s23 | E75 | Ō | 0 | 0 | 02 | Q | | | 154 | 03 | 02 | 141 | 134 | 20 | 9474 | N21 | w38 | 0 | 0 | 0 | 03 | Q | SOL: Eruptive | | 124 | 03 | UL. | 141 | 134 | | 9475 | N20 | W19 | ŏ | Ŏ | ŏ | 03 | Q | MAG: Quiet | | | | | | | | 9477 | S17 | W55 | ŏ | Ö | ŏ | 03 | Q | PRO: Quiet | | | | | | | | 9482 | S12 | E05 | ŏ | Ŏ | Ŏ | 03 | Q | | | | | | | | | 9483 | S22 | W73 | ŏ | Ŏ | ŏ | 03 | Q | | | | | | | | | 9484 | S06 | E22 | 5 | Ŏ | Ō | 03 | E | | | | | | | | | 9485 | s21 | E64 | Ō | 0 | 0 | 03 | Q | | | | | | | | | 9486 | N28 | W08 | Ö | Ö | Ō | 03 | Q | | | | | | | | | 9487 | N20 | E75 | Ö | Ö | Ö | 03 | Q | | | 155 | 04 | 03 | 143 | 145 | 10 | 9474 | N22 | <b>W</b> 51 | 0 | 0 | 0 | 04 | Q | SOL: Eruptive | | 1,55 | 04 | 03 | 173 | | | 9475 | N19 | W29 | Ö | Ŏ | Ö | 04 | Q | MAG: Quiet | | | | | | | | 9482 | S16 | W04 | Ŏ | Ŏ | Ö | 04 | Q | PRO: Quiet | | | | | | | | 9483 | s22 | W84 | Ō | 0 | 0 | 04 | Q | | | | | | | | | 9484 | s06 | E08 | 3 | 0 | 0 | 04 | E | | | | | | | | | 9485 | <b>S23</b> | E46 | 0 | 0 | 0 | 04 | Q | | | | | | | | | 9486 | N28 | W22 | 2 | 0 | 0 | 04 | Q | | | | | | | | | 9487 | N19 | E60 | 0 | 0 | 0 | 04 | Q | | | | | | | | | 9488 | S18 | E61 | 3 | 0 | 0 | 04 | Q | | | 156 | 05 | 04 | 125 | 154 | 8 | 9475 | N20 | W42 | 0 | 0 | 0 | 05 | E | SOL: Eruptive | | | | | | | | 9482 | S16 | W17 | 0 | 0 | 0 | 05 | Q | MAG: Quiet | | | | | | | | 9484 | s06 | W06 | 2 | 1 | 0 | 05 | E | PRO: Quiet | | | | | | | | 9485 | S23 | E35 | 0 | 0 | 0 | 05 | Q | | | | | | | | | 9486 | N28 | W34 | 3 | 1 | 0 | 05 | Q | | | | | | | | | 9487 | N19 | E48 | 0 | 0 | 0 | 05 | Q<br>_ | | | | | | | | | 9488 | <b>S18</b> | E48 | 3 | 1 | 0 | 05 | E | | | 157 | 06 | 05 | 160 | 153 | 10 | 9475 | N21 | W56 | 0 | 0 | 0 | 06 | Q | SOL: Eruptive | | | | | | | | 9484 | S05 | W20 | 1 | 0 | 0 | 06 | E | MAG: Quiet | | | | | | | | 9485 | s23 | E20 | 0 | 0 | 0 | 06 | Q | PRO: Quiet | | | | | | | | 9486 | N28 | W48 | 0 | 0 | 0 | 06 | Q | | | | | | | | | 9487 | N19 | E35 | 0 | 0 | 0 | 06 | Q | | | | | | | | | 9488 | s20 | E33 | 2 | 1 | 0 | 06 | Q | | | | | | | | | 9489 | N17 | E52 | 0 | 0 | 0 | 06 | Q | | | | | | | | | 9490<br>9491 | S13<br>N22 | E49<br>E75 | 0<br>0 | 0 | 0 | 06<br>06 | Q<br>Q | | | | | | | | | | | | - | | | | | | | 158 | 07 | 06 | 170 | 158 | 9 | 9475<br>9484 | N20<br>S05 | W71<br>W33 | 3<br>2 | 0 | 0<br>0 | 07<br>07 | Q<br>E | SOL: Eruptive MAG: Quiet | | | | | | | | 9486 | N28 | W61 | 1 | Ö | Ö | 07 | Q | PRO: Quiet | | | | | | | | 9487 | N20 | E22 | ó | Ö | 0 | 07 | Q | ino. waice | | | | | | | | 9488 | S20 | E19 | 7 | Ö | 0 | 07 | E | | | | | | | | | 9489 | N18 | E39 | ó | Ö | Ö | 07 | Q | | | | | | | | | 9490 | S12 | E35 | Ö | Ö | Ö | 07 | Q | | | | | | | | | 9491 | N23 | E63 | ő | Ö | Ö | 07 | Q | | | | | | | | | 9492 | N18 | E62 | ŏ | ŏ | Ö | 07 | Q | | | | | | | | | 9493 | N05 | E73 | Ŏ | Ŏ | Ö | 07 | Q | | | | | | | | | 7473 | NUO | E13 | U | U | U | U/ | w | | JUNE | | Date | Date | | 10-cm | | ; | Loca | tion | F | lares | | Date | | | |---------------|-------------|-----------|-------------|---------------|-------------|--------------|------------|------------|---------------|--------|----------|------------|-------------------|----------------------------| | Julian<br>Day | of<br>Issue | of<br>Obs | Wolf<br>No. | Solar<br>Flux | A-<br>index | Rgn<br>No. | Lat | Lon | 0pt | М | <u> </u> | of<br>Fcst | Region<br>Fcst(1) | Geoadvice(1) | | 159 | 08 | 07 | 163 | 165 | 12 | 9475 | N18 | w85 | 0 | 0 | 0 | 08 | Q | SOL: Eruptive | | | | | | | | 9484 | s06 | W47 | 2 | 0 | 0 | 08 | Ε | MAG: Quiet | | | | | | | | 9486 | N28 | W74 | 0 | 0 | 0 | 08 | Q | PRO: Quiet | | | | | | | | 9487 | N22 | E09 | 0 | 0 | 0 | 80 | Q | | | | | | | | | 9488 | <b>S18</b> | E04 | 1 | 0 | 0 | 08 | E | | | | | | | | | 9489 | N18 | E24 | 0 | 0 | 0 | 08 | Q | | | | | | | | | 9491 | N24 | E50 | 0 | 0 | 0 | 80 | Q | | | | | | | | | 9492 | N19 | E50 | 1 | 0 | 0 | 80 | Q | | | | | | | | | 9493 | N06 | E64 | 0 | 0 | 0 | 80 | Q | | | 160 | 09 | 80 | 179 | 180 | 9 | 9484 | S06 | W61 | 0 | 0 | 0 | 09 | Q | SOL: Eruptive | | | | | | | | 9486 | N27 | W87 | 0 | 0 | 0 | 09 | Q | MAG: Quiet | | | | | | | | 9487 | N22 | W03 | 0 | 0 | 0 | 09 | Q | PRO: Quiet | | | | | | | | 9488 | S19 | W09 | 1<br>0 | 0 | 0<br>0 | 09 | E | | | | | | | | | 9489 | N17 | E08 | | | 0 | 09<br>09 | Q | | | | | | | | | 9491 | N24 | E37 | 0 | 0 | | | Q | | | | | | | | | 9492 | N19 | E36 | 0 | - | 0 | 09 | Q | | | | | | | | | 9493 | N05 | E51 | 1 | 0 | 0 | 09 | Q | | | | | | | | | 9494 | S08 | W30 | 5 | 1 | 0 | 09 | E | | | | | | | | | 9495 | N04 | E24 | 0 | 0 | 0 | 09 | Q | | | 161 | 10 | 09 | 250 | 177 | 17 | 9484 | S07 | W78 | 0 | 0 | 0 | 10 | Q | SOL: Eruptive | | | | | | | | 9487 | N22 | W18 | 1 | 0 | 0 | 10 | Q | MAG: Active | | | | | | | | 9488 | S19 | W20 | 1 | 0 | 0 | 10 | E | PRO: Quiet | | | | | | | | 9489 | N18 | W04 | 2 | 0 | 0 | 10 | E | | | | | | | | | 9490 | S16 | W04 | 0 | 0 | 0 | 10 | Q | | | | | | | | | 9491 | N25 | E23 | 0 | 0 | 0 | 10 | Q | | | | | | | | | 9492 | N20 | E23 | 0 | 0 | 0 | 10 | Q | | | | | | | | | 9493 | N06 | E37 | 4 | 0 | 0 | 10 | Q | | | | | | | | | 9494 | S08 | W44 | 15 | 0 | 0 | 10 | E | | | | | | | | | 9495<br>9496 | N04<br>N09 | E11<br>W36 | 0<br>0 | 0<br>0 | 0<br>0 | 10<br>10 | Q<br>Q | | | 162 | 11 | 10 | 217 | 163 | 17 | 9484 | s06 | W92 | 0 | 0 | 0 | 11 | Q | SOL: Eruptive | | 102 | 11 | 10 | 211 | 103 | 17 | 9487 | N21 | W30 | 3 | Ö | Ö | 11 | Q | MAG: Active | | | | | | | | 9488 | S18 | W32 | 1 | Ö | Ö | 11 | Q | PRO: Quiet | | | | | | | | 9489 | N18 | W17 | 2 | Ö | Ö | 11 | E | rko. waiet | | | | | | | | 9491 | N25 | E10 | 0 | Ö | Ö | 11 | Q | | | | | | | | | 9492 | N20 | E11 | 0 | Ö | Ö | 11 | Q | | | | | | | | | | N06 | E25 | 1 | 0 | 0 | 11 | Q | | | | | | | | | 9493 | | | | | | | | | | | | | | | | 9494 | S08 | W57 | 7 | 0 | 0 | 11 | E | | | | | | | | | 9495 | N04 | W03 | 0 | 0 | 0 | 11 | Q | | | | | | | | | 9496 | N09 | W47 | 0 | 0 | 0 | 11 | Q | | | | | | | | | 9497<br>9498 | S10<br>N22 | E27<br>E58 | 2<br>0 | 0<br>0 | 0<br>0 | 11<br>11 | Q<br>Q | | | 147 | 12 | 11 | 2/0 | 142 | 0 | | | U/.7 | 4 | 0 | ٥ | 12 | 0 | SOL - Enuntiv | | 163 | 12 | 11 | 249 | 162 | 9 | 9487<br>9488 | N21 | W43<br>W45 | 1 | 0 | 0 | 12<br>12 | Q | SOL: Eruptiv | | | | | | | | | S19 | | 1 | | | | Q | MAG: Quiet | | | | | | | | 9489 | N17 | W30 | 1 | 0 | 0 | 12 | E | PRO: Quiet | | | | | | | | 9491 | N25 | W03 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9492 | N20 | W02 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9493 | N06 | E12 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9494 | s08 | W69 | 1 | 0 | 0 | 12 | E | | | | | | | | | 9495 | N04 | W16 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9496 | N08 | W62 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9497 | s09 | E14 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9498 | N24 | E46 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9499 | N18 | E17 | 0 | 0 | 0 | 12 | Q | | | | | | | | | 9500<br>9501 | N10<br>S14 | E71<br>E69 | 0<br>0 | 0 | 0 | 12<br>12 | Q<br>Q | | | 1// | 47 | 40 | 407 | 1// | | | | | | | | | | COL . From ti | | 164 | 13 | 12 | 193 | 166 | 6 | 9487<br>9488 | N22<br>S18 | W55<br>W56 | <u>2</u><br>2 | 0 | 0 | 13<br>13 | Q<br>Q | SOL: Eruptiv<br>MAG: Quiet | | | | | | | | 9489 | N20 | W42 | 0 | 0 | 0 | 13 | Q | PRO: Quiet | | | | | | | | 9489<br>9491 | N20<br>N26 | W42<br>W14 | 0 | 0 | 0 | 13 | Q | rku: wulet | | | | | | | | | | | 1 | - | | | | | | | | | | | | 9492 | N21 | W15 | | 0 | 0 | 13 | Q | | | | | | | | | 9493 | N07 | E00 | 0 | 0 | 0 | 13 | Q | | JUNE | Julian | Date<br>of | Date<br>of | Wolf | 10-cm<br>Solar | Α- | Rgn | Loca | | | lares | | Date<br>of | Region | 0-1-1-1 | |--------|------------|------------|------|----------------|-------|--------------|------------|-------------|--------|--------|---|------------|---------|------------------------| | Day | Issue | 0bs | No. | Flux | index | No. | Lat | Lon | 0pt | M | X | Fcst | Fcst(1) | Geoadvice(1 | | | | | | | | 9494 | s07 | W81 | 2 | 0 | 0 | 13 | E | | | | | | | | | 9495 | N05 | <b>W</b> 30 | 0 | 0 | 0 | 13 | Q | | | | | | | | | 9497 | S09 | E02 | 0 | 0 | 0 | 13 | Q | | | | | | | | | 9498 | N23 | E31 | 0 | 0 | 0 | 13 | Q | | | | | | | | | 9499 | N18 | E03 | 0 | 0 | 0 | 13 | Q | | | | | - | | | | 9500 | N10 | E57 | 0 | 0 | 0 | 13 | Q | | | | | | | | | 9501<br>9502 | S15<br>S25 | E55<br>E68 | 0 | 0 | 0 | 13<br>13 | Q<br>Q | | | | | | | | | | | | | | | | | | | 165 | 14 | 13 | 221 | 181 | 11 | 9487<br>9488 | N22<br>S18 | W68<br>W70 | 1<br>0 | 0 | 0 | 14<br>14 | Q<br>Q | SOL: Active MAG: Quiet | | | | | | | | 9489 | N20 | W55 | 7 | Ö | Ö | 14 | Ē | PRO: Quiet | | | | | | | | 9491 | N27 | W27 | Ö | Ŏ | Ö | 14 | Q | | | | | | | | | 9492 | N21 | W28 | Ö | Ō | Ō | 14 | Q | | | | | | | | | 9493 | N07 | W15 | Ö | Ō | Ō | 14 | Q | | | | | | | | | 9494 | s07 | W88 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9495 | N05 | W34 | 1 | 0 | 0 | 14 | Q | | | | | | | | | 9497 | S10 | W12 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9498 | N23 | E18 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9499 | N19 | W12 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9500 | N09 | E43 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9501 | S15 | E42 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9502 | s26 | E58 | 4 | 2 | 0 | 14 | E | | | | | | | | | 9503 | N13 | E68 | 0 | 0 | 0 | 14 | Q | | | | | | | | | 9504 | N06 | E76 | 0 | 0 | 0 | 14 | Q | | | 66 | 15 | 14 | 273 | 195 | 6 | 9487 | N23 | W82 | 1 | 0 | 0 | 15 | Q | SOL: Activ | | | | | | | | 9488 | S17 | W82 | 0 | 0 | 0 | 15 | Q | MAG: Quiet | | | | | | | | 9489 | N20 | W69 | 3 | 0 | 0 | 15 | E | PRO: Quiet | | | | | | | | 9491 | N28 | W40 | 0 | 0 | 0 | 15 | Q | | | | | | | | | 9492 | N21 | W41 | 1 | 0 | 0 | 15 | Q | | | | | | | | | 9493 | N07 | W28 | 0 | 0 | 0 | 15 | Ğ | | | | | | | | | 9495 | N06 | W46 | 1 | 0 | 0 | 15 | E | | | | | | | | | 9497 | S09 | W23 | 0 | 0 | 0 | 15<br>15 | Q | | | | | | | | | 9498<br>9499 | N24<br>N20 | E05<br>W26 | 0<br>0 | 0 | 0 | 15<br>15 | Q<br>Q | | | | | | | | | 9500 | N10 | w20<br>E31 | 0 | 0 | 0 | 15 | Q | | | | | | | | | 9501 | S13 | E28 | 0 | Ö | Ö | 15 | Q | | | | | | | | | 9502 | S26 | E45 | Ö | Ö | ŏ | 15 | Ē | | | | | | | | | 9503 | N15 | E59 | ŏ | Ö | ŏ | 15 | Q | | | | | | | | | 9504 | N07 | E63 | ŏ | Ö | ŏ | 15 | Q | | | | | | | | | 9505 | N22 | E73 | Ŏ | Ö | Ŏ | 15 | Q | | | | | | | | | 9506 | N17 | E79 | Ŏ | Ŏ | Ö | 15 | Q | | | 167 | 16 | 15 | 264 | 197 | 11 | 9489 | N20 | W80 | 1 | 0 | 0 | 16 | Ε | SOL: Active | | | | | | | | 9491 | N24 | W53 | Ó | Ō | Ö | 16 | Q | MAG: Quiet | | | | | | | | 9492 | N21 | W52 | 2 | 0 | 0 | 16 | Q | PRO: IP | | | | | | | | 9493 | N06 | W41 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9495 | N05 | W59 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9497 | S10 | W35 | 1 | 0 | 0 | 16 | Q | | | | | | | | | 9498 | N24 | W08 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9499 | N19 | W41 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9500 | N09 | E18 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9501 | s13 | E15 | 1 | 0 | 0 | 16 | Q | | | | | | | | | 9502 | S25 | E32 | 5 | 1 | 0 | 16 | E | | | | | | | | | 9503 | N15 | E46 | 0 | 0 | 0 | 16 | E | | | | | | | | | 9504 | N07 | | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9505 | N23 | E59 | 0 | 0 | 0 | 16 | Q | | | | | | | | | 9506<br>9507 | N17<br>N13 | E67<br>E26 | 1<br>0 | 0<br>0 | 0 | 16<br>16 | Q<br>Q | | | | | | | | | | | | | U | | | u | | | 168 | 17 | 16 | 276 | 208 | 6 | 9491<br>9492 | N28<br>N23 | W66<br>W70 | 0 | 0 | 0 | 17<br>17 | Q<br>Q | SOL: Activ | | | | | | | | 9493 | NO7 | | 0 | 0 | 0 | 17 | Q | PRO: Quiet | | | | | | | | 9495<br>9495 | N07 | | 5 | 0 | 0 | 17 | E | rno. wuiet | | | | | | | | ァサアノ | 1400 | W17 | _ | U | U | 11 | | | | | | | | | | 9497 | <b>S10</b> | W49 | 0 | 0 | 0 | 17 | Q | | JUNE | Julian | Date<br>of | Date<br>of | Wolf | 10-cm<br>Solar | Α- | Rgn | Loca | tion | F | lares | 3 | Date<br>of | Region | | |--------|------------|------------|------|----------------|-------|--------------|------------|------------|--------|-------|--------|------------|---------|------------------------| | Day | Issue | 0bs | No. | Flux | index | No. | Lat | Lon | 0pt | М | X | Fcst | Fcst(1) | Geoadvice(1) | | | | | | | | 9499 | N20 | W58 | 0 | 0 | 0 | 17 | Q | | | | | | | | | 9500 | N10 | E04 | 0 | 0 | 0 | 17 | Q | | | | | | | | | 9501 | S13 | E02 | 0 | 0 | 0<br>0 | 17<br>17 | Q | | | | | | | | | 9502<br>9503 | S25<br>N13 | E19<br>E33 | 1<br>0 | 0 | 0 | 17<br>17 | E<br>E | | | | | | | | | 9504 | N07 | E37 | 0 | 0 | 0 | 17 | Q | | | | | | | | | 9505 | N21 | E46 | 1 | Ö | ő | 17 | Q. | | | | | | | | | 9506 | N17 | E61 | i | Ŏ | Ö | 17 | Ē | | | | | | | | | 9507 | N12 | E11 | Ó | Ō | 0 | 17 | Q | | | | | | | | | 9508 | s20 | W60 | 0 | 0 | 0 | 17 | Q | | | 169 | 18 | 17 | 289 | 205 | 8 | 9491 | N27 | W79 | 0 | 0 | 0 | 18 | Q | SOL: Active | | | | | | | | 9492 | N23 | W84 | 0 | 0 | 0 | 18 | Q | MAG: Quiet | | | | | | | | 9493 | NO7 | W77 | 0 | 0 | 0<br>0 | 18<br>18 | Q | PRO: Quiet | | | | | | | | 9495<br>9497 | N05<br>S09 | W86<br>W67 | 0<br>0 | 0 | 0 | 18<br>18 | Q<br>Q | | | | | | | | | 9497<br>9498 | N23 | w67<br>W37 | 0 | 0 | 0 | 18 | Q | | | | | | | | | 9499 | N20 | W71 | Ö | Ö | ő | 18 | Q | | | | | | | | | 9500 | N10 | W09 | Ö | Ö | ŏ | 18 | Q | | | | | | | | | 9501 | s13 | W11 | Ŏ | Ö | Ö | 18 | Q | | | | | | | | | 9502 | S25 | E05 | Ō | Ō | Ö | 18 | Ē | | | | | | | | | 9503 | N14 | E20 | 1 | 0 | 0 | 18 | E | | | | | | | | | 9504 | 80N | E24 | 1 | 0 | 0 | 18 | Q | | | | | | | | | 9505 | N21 | E32 | 0 | 0 | 0 | 18 | Q | | | | | | | | | 9506 | N17 | E48 | 0 | 0 | 0 | 18 | E | | | | | | | | | 9507 | N12 | W01 | 0 | 0 | 0 | 18 | Q | | | | | | | | | 9508 | S20 | W72 | 0 | 0 | 0 | 18 | Q | | | 170 | 19 | 18 | 220 | 221 | 31 | 9491 | N27 | W91 | 0 | 0 | 0 | 19 | Q | SOL: Active | | | | | | | | 9493 | N07 | W89 | 0 | 0 | 0 | 19 | Q | MAG: Active | | | | | | | | 9498 | N23 | W50 | 0 | 0 | 0 | 19 | Q | PRO: Quiet | | | | | | | | 9499<br>9500 | N20<br>N11 | W83<br>W22 | 0<br>1 | 0 | 0<br>0 | 19<br>19 | Q<br>Q | | | | | | | | | 9501 | S14 | W24 | Ó | 0 | 0 | 19 | Q | | | | | | | | | 9502 | S26 | W08 | ŏ | Ö | ŏ | 19 | Q Q | | | | | | | | | 9503 | N14 | E07 | 7 | Ŏ | ŏ | 19 | Ē | | | | | | | | | 9504 | N08 | E11 | Ô | 0 | 0 | 19 | Q | | | | | | | | | 9505 | N21 | E19 | 0 | 0 | 0 | 19 | Q | | | | | | | | | 9506 | N17 | E34 | 4 | 1 | 0 | 19 | E | | | 171 | 20 | 19 | 222 | 195 | 13 | 9498 | N22 | W64 | 0 | 0 | 0 | 20 | Q | SOL: Eruptiv | | | | | | | | 9500 | N11 | W37 | 0 | 0 | 0 | 20 | Q | MAG: Active | | | | | | | | 9501 | S13 | W38 | 0 | 0 | 0 | 20 | Q | PRO: Quiet | | | | | | | | 9502 | S26 | W21 | 0 | 0 | 0 | 20 | Q | | | | | | | | | 9503<br>9504 | N16 | W06 | 0<br>1 | 0 | 0 | 20<br>20 | Q | | | | | | | | | 9504<br>9505 | N08<br>N22 | W02<br>E05 | Ó | 0 | 0 | 20 | Q<br>Q | | | | | | | | | 9506 | N19 | E21 | Ö | Ö | Ö | 20 | E | | | | | | | | | 9509 | s11 | W04 | Ö | Ö | Ö | 20 | Q | | | 172 | 21 | 20 | 232 | 199 | 15 | 9498 | N23 | w78 | 0 | 0 | 0 | 21 | Q | SOL: Eruptiv | | | | | | , | | 9500 | N12 | W49 | ŏ | ŏ | ŏ | 21 | Q. | MAG: Quiet | | | | | | | | 9501 | s13 | W50 | Ö | Ŏ | Ŏ | 21 | Q | PRO: Quiet | | | | | | | | 9502 | s27 | W30 | 0 | 0 | 0 | 21 | Q | | | | | | | | | 9503 | N16 | W20 | 1 | 0 | 0 | 21 | Q | | | | | | | | | 9504 | N09 | W17 | 1 | 0 | 0 | 21 | Q | | | | | | | | | 9505 | N22 | W07 | 0 | 0 | 0 | 21 | Q | | | | | | | | | 9506 | N19 | E08 | 0 | 0 | 0 | 21 | E | | | | | | | | | 9509<br>0510 | S10 | W18 | 0 | 0 | 0 | 21 | Q | | | | | | | | | 9510<br>9511 | S06<br>N11 | W35<br>E53 | 0<br>0 | 0 | 0<br>0 | 21<br>21 | Q<br>Q | | | 177 | 22 | 24 | 242 | 200 | 17 | | | | 0 | | 0 | 22 | • | COL. Action | | 173 | 22 | 21 | 212 | 200 | 13 | 9501<br>9503 | S13<br>N16 | W64<br>W33 | 0<br>1 | 0 | 0 | 22<br>22 | Q<br>E | SOL: Active MAG: Quiet | | | | | | | | 9503<br>9504 | N 10 | w33<br>W28 | 3 | 0 | 0 | 22<br>22 | Q | PRO: Quiet | | | | | | | | 7304 | | | | | | | | rico. walet | | | | | | | | 9505 | N21 | W21 | 0 | 0 | 0 | 22 | Q | | JUNE | Julian | Date<br>of | Date<br>of | Wolf | 10-cm<br>Solar | Α- | Rgn | Loca | tion | F | lares | ; | Date<br>of | Region | | |--------|------------|------------|------|----------------|-------|--------------|------------|-------------|--------|--------|--------|------------|---------|--------------------------| | Day | Issue | 0bs | No. | Flux | index | No. | Lat | Lon | 0pt | M | × | Fcst | Fcst(1) | Geoadvice(1) | | | | | | | | 9509 | s11 | W31 | 0 | 0 | 0 | 22 | Q | | | | | | | | | 9510 | s06 | W49 | 0 | 0 | 0 | 22 | Q | | | | | | | | | 9511 | N10 | E39 | 0<br>0 | 0 | 0<br>0 | 22 | Q | | | | | | | | | 9512<br>9513 | S23<br>N21 | E31<br>E76 | 0 | 0 | 0 | 22<br>22 | Q<br>Q | | | 174 | 23 | 22 | 203 | 204 | 9 | 9501 | s13 | w78 | 0 | 0 | 0 | 23 | Q | SOL: Active | | | | | | | | 9503 | N17 | W46 | 4 | 1 | 0 | 23 | E | MAG: Quiet | | | | | | | | 9504 | N09 | W42 | 1 | 0 | 0 | 23 | Q | PRO: Quiet | | | | | | | | 9505 | N21 | W34 | 0 | 0 | 0 | 23 | Q | | | | | | | | | 9506 | N19 | W18 | 0 | 0 | 0 | 23 | Q _ | | | | | | | | | 9509<br>9510 | S10<br>S07 | W45<br>W64 | 3<br>0 | 0 | 0<br>0 | 23<br>23 | E<br>Q | | | | | | | | | 9511 | N10 | W04<br>E25 | 4 | 2 | 0 | 23 | Q | | | | | | | | | 9512 | S22 | E17 | Ō | Õ | Ö | 23 | Q | | | | | | | | | 9513 | N22 | E66 | Ŏ | Ŏ | Ö | 23 | Q | | | | | | | | | 9514 | N17 | E65 | 0 | 0 | 0 | 23 | Q | | | 175 | 24 | 23 | 228 | 106 | 8 | 9501 | S13 | W90 | 0 | 0 | 0 | 24 | Q | SOL: Active | | | | | | | | 9503 | N16 | W61 | 5 | 0 | 0 | 24 | E | MAG: Quiet | | | | | | | | 9504<br>9506 | N08<br>N18 | W56<br>W34 | 0<br>0 | 0 | 0<br>0 | 24<br>24 | Q<br>Q | PRO: Quiet | | | | | | | | 9509 | S09 | W60 | 1 | 0 | 0 | 24 | Q | | | | | | | | | 9510 | s07 | W78 | ò | ŏ | Ö | 24 | Q | | | | | | | | | 9511 | N10 | E13 | 20 | 2 | 1 | 24 | Ē | | | | | | | | | 9512 | <b>S22</b> | E05 | 0 | 0 | 0 | 24 | Q | | | | | | | | | 9513 | N23 | E56 | 0 | 0 | 0 | 24 | Q | | | | | | | | | 9514 | N17 | E54 | 0 | 0 | 0 | 24 | Q | | | | | | | | | 9515<br>9516 | S06<br>N12 | E46<br>E70 | 1<br>0 | 0<br>0 | 0<br>0 | 24<br>24 | Q<br>Q | | | 176 | 25 | 24 | 212 | 195 | 11 | 9503 | N15 | w75 | 1 | 0 | 0 | 25 | E | SOL: Active | | | | | | | | 9504 | N07 | <b>W</b> 70 | 0 | 0 | 0 | 25 | Q | MAG: Quiet | | | | | | | | 9506 | N17 | <b>W</b> 46 | 1 | 0 | 0 | 25 | Q | PRO: Quiet | | | | | | | | 9509 | S10 | W76 | 0 | 0 | 0 | 25 | Q | | | | | | | | | 9511 | N10 | E00 | 2 | 0 | 0 | 25 | E | | | | | | | | | 9512<br>9513 | S22<br>N23 | W09<br>E44 | 0<br>0 | 0 | 0 | 25<br>25 | Q<br>Q | | | | | | | | | 9514 | N23 | E41 | 0 | 0 | Ö | 25 | Q | | | | | | | | | 9515 | s06 | E32 | ŏ | Ö | Õ | 25 | Q | | | | | | | | | 9516 | N11 | E55 | Ŏ | Ö | Ö | 25 | Q | | | 177 | 26 | 25 | 220 | 182 | 7 | 9503 | N16 | W86 | 2 | 0 | 0 | 26 | E | SOL: Eruptive | | | | | | | | 9504 | N08 | W83 | 0 | 0 | 0 | 26 | Q | MAG: Quiet | | | | | | | | 9506 | N17 | W61 | 2 | 0 | 0 | 26<br>26 | Q | PRO: Quiet | | | | | | | | 9511<br>9512 | N09<br>S24 | W14<br>W23 | 0<br>0 | 0 | 0 | 26<br>26 | Q<br>Q | | | | | | | | | 9513 | N22 | E31 | ŏ | Ö | Ö | 26 | Q | | | | | | | | | 9514 | N17 | E28 | Ŏ | Ŏ | ŏ | 26 | Q | | | | | | | | | 9515 | s07 | E19 | 0 | 0 | 0 | 26 | Q | | | | | | | | | 9516 | N12 | E42 | 0 | 0 | 0 | 26 | Q | | | | | | | | | 9517 | S15 | <b>W</b> 59 | 3 | 0 | 0 | 26 | Q | | | 178 | 27 | 26 | 177 | 168 | 8 | 9504<br>9506 | N08<br>N18 | W98<br>W75 | 0<br>0 | 0<br>0 | 0<br>0 | 27<br>27 | Q<br>Q | SOL: Eruptive MAG: Quiet | | | | | | | | 9511 | N10 | W27 | 0 | 0 | Ö | 27 | Q | PRO: Quiet | | | | | | | | 9512 | S22 | W36 | ŏ | ŏ | Ö | 27 | Q Q | | | | | | | | | 9513 | N22 | E17 | 2 | Ō | Ō | 27 | E | | | | | | | | | 9514 | N16 | E14 | 2 | 0 | 0 | 27 | Q | | | | | | | | | 9515 | s06 | E05 | 0 | 0 | 0 | 27 | Q | | | | | | | | | 9516<br>9517 | N11<br>S14 | E27<br>W72 | 0<br>0 | 0 | 0<br>0 | 27<br>27 | Q<br>Q | | | 179 | 28 | 27 | 185 | 148 | 8 | 9506 | N18 | w87 | 0 | 0 | 0 | 28 | Q | SOL: Eruptiv | | | | | | | • | 9511 | N10 | W37 | ŏ | Ö | Ö | 28 | Q | MAG: Quiet | | | | | | | | 9512 | s23 | <b>W</b> 50 | 4 | 0 | 0 | 28 | E | PRO: Quiet | | | | | | | | 9513 | N22 | E05 | 0 | 0 | 0 | 28 | Ε | | | | | | | | | JUNE | 2 | . 2 | 001 | | | | | | | |--------|------------|------------|------|----------------|-------|------|------|------|--------|-------|----------|------------|---------|------|----------| | Julian | Date<br>of | Date<br>of | Wolf | 10-cm<br>Solar | A- | Rgn | Loca | tion | F | lares | <b>.</b> | Date<br>of | Region | | | | Day | Issue | 0bs | No. | Flux | index | No. | Lat | Lon | 0pt | М | X | Fcst | Fcst(1) | Geoa | dvice(1) | | | | | | ****** | | 9514 | N16 | E00 | 0 | 0 | 0 | 28 | Q | | | | | | | | | | 9515 | s07 | W09 | 0 | 0 | 0 | 28 | Q | | | | | | | | | | 9516 | N11 | E14 | 0 | 0 | 0 | 28 | Q | | | | | | | | | | 9518 | S48 | E45 | 5 | 0 | 0 | 28 | E | | | | | | | | | | 9519 | N17 | E23 | 0 | 0 | 0 | 28 | Q | | | | | | | | | | 9520 | S10 | E25 | 0 | 0 | 0 | 28 | Q | | | | 180 | 29 | 28 | 143 | 140 | 2 | 9511 | N10 | W54 | 3 | 0 | 0 | 29 | E | SOL: | Eruptive | | | | | | | | 9512 | S22 | W68 | 3<br>2 | 0 | 0 | 29 | Ε | MAG: | Quiet | | | | | | | | 9513 | N22 | W10 | 0 | 0 | 0 | 29 | Q | PRO: | Quiet | | | | | | | | 9514 | N17 | W14 | 0 | 0 | 0 | 29 | Q | | | | | | | | | | 9515 | S05 | W23 | 0 | 0 | 0 | 29 | Q | | | | | | | | | | 9516 | N12 | E01 | 0 | 0 | 0 | 29 | Q | | | | | | | | | | 9518 | S47 | E34 | 0 | 0 | 0 | 29 | E | | | | | | | | | | 9519 | N18 | E11 | 0 | 0 | 0 | 29 | Q | | | | | | | | | | 9521 | s06 | E48 | 0 | 0 | 0 | 29 | Q | | | | | | | | | | 9522 | s08 | E66 | 0 | 0 | 0 | 29 | Q | | | | 181 | 30 | 29 | 98 | 140 | 4 | 9511 | N11 | W67 | 0 | 0 | 0 | 30 | Q | SOL: | Eruptive | | | | | | | | 9512 | S22 | W83 | 0 | 0 | 0 | 30 | Q | MAG: | Quiet | | | | | | | | 9513 | N21 | W25 | 0 | 0 | 0 | 30 | Q | PRO: | Quiet | | | | | | | | 9515 | s06 | W38 | 0 | 0 | 0 | 30 | Q | | | | | | | | | | 9516 | N12 | W14 | 0 | 0 | 0 | 30 | Q | | | | | | | | | | 9518 | S47 | E22 | 0 | 0 | 0 | 30 | Q | | | | | | | | | | 9522 | s08 | E52 | 0 | 0 | 0 | 30 | Q | | | | | | | | | | 9523 | 548 | F35 | 1 | Ω | Λ | 30 | F | | | | (1) Region | n Forecast an | d Flare (SOL) Advice | |------------|---------------|-----------------------------------------------------------------------------| | _ | Q = Quiet | (<50% probability of C-class flares) | | | E = Eruptiv | e (C-class flares expected, probability >=50%) | | | A = Active | (M-class flares expected, probability >=50%) | | | M = Maior | (X-class flares expected, probability >=50%) | | | | (Proton flares expected, probability >=50%) | | | | (activity levels are expected to increase, but no numerical forecast given) | | | | cast available | | | | | | Magne | tic (MAG) Geo | advice | | | 'Quiet' | | | | 'Active' c | onditions expected (A>=20 or K=4) | | | | torm expected (A>=30 or K=5) | | | | torm expected (A>=50 or K>=6) | | | | torm expected (A>=100 or K>=7) | | | | agstorm in progress (A>=30 or K>=4) | | | | activity levels are expected to increase, but no numerical forecast given) | | | | o forecast available | | Proto | n (PRO) Geoad | vice | | | 'Quiet' | | | | 'Proton' e | event expected (10pfu at >10MeV) | | | 'Major' p | proton event expected (100pfu at >100 MeV) | | | 'IP' p | proton event in progress (>10 MeV) | | | | activity levels are expected to increase, but no numerical forecast given) | | | | o forecast available | | | • | | | Day | Jul 00 | Aug | Sep | Oct | Nov | Dec | Jan 01 | Feb | Mar | Apr* | May* | Jun* | |------|-----------|-------|-------|------|-------|-------|--------|------|-------|-------|------|-------| | 1 | 145 | 106 | 142 | 115 | 140 | 116 | 89 | 78 | 52 | 186 | 115 | 58 | | 2 | 141 | 110 | 118 | 153 | 147 | 109 | 94 | 78 | 53 | 166 | 118 | 99 | | 3 | 124 | 107 | 128 | 159 | 141 | 118 | 88 | 92 | 75 | 169 | 115 | 99 | | 4 | 114 | 110 | 134 | 150 | 130 | 72 | 98 | 91 | 92 | 134 | 132 | 96 | | 5 | 127 | 144 | 114 | 128 | 133 | 65 | 110 | 105 | 104 | 133 | 118 | 106 | | 6 | 154 | 143 | 114 | 97 | 108 | 57 | 130 | 110 | 91 | 110 | 92 | 119 | | 7 | 177 | 164 | 110 | 66 | 122 | 68 | 131 | 111 | 85 | 110 | 79 | 129 | | 8 | 177 | 140 | 85 | 72 | 127 | 57 | 105 | 111 | 63 | 115 | 55 | 142 | | 9 | 179 | 128 | 55 | 71 | 95 | 58 | 115 | 114 | 79 | 110 | 63 | 168 | | 10 | 215 | 154 | 42 | 57 | 101 | 62 | 101 | 105 | 97 | 114 | 60 | 159 | | | | | | | | | | | | | | | | 11 | 202 | 165 | 26 | 82 | 90 | 72 | 115 | 100 | 90 | 115 | 80 | 173 | | 12 | 186 | 170 | 35 | 122 | 72 | 89 | 117 | 71 | 95 | 103 | 84 | 171 | | 13 | 194 | 176 | 63 | 121 | 70 | 114 | 111 | 71 | 74 | 98 | 85 | 160 | | 14 | 164 | 204 | 60 | 104 | 84 | 135 | 100 | 68 | 80 | 92 | 102 | 180 | | 15 | 148 | 183 | 77 | 83 | 98 | 153 | 92 | 75 | 75 | 75 | 96 | 186 | | 16 | 197 | 178 | 85 | 92 | 95 | 145 | 75 | 73 | 70 | 63 | 99 | 191 | | 17 | 224 | 152 | 108 | 97 | 94 | 151 | 59 | 71 | 51 | 28 | 95 | 178 | | 18 | 228 | 140 | 112 | 95 | 116 | 138 | 60 | 76 | 61 | 38 | 100 | 153 | | 19 | 246 | 133 | 121 | 90 | 125 | 118 | 73 | 75 | 66 | 62 | 85 | 141 | | 20 | 241 | 106 | 124 | 94 | 110 | 127 | 61 | 76 | 80 | 86 | 82 | 136 | | | | | | | | ,,, | | | | | | | | 21 | 231 | 77 | 137 | 97 | 120 | 116 | 81 | 94 | 88 | 116 | 95 | 144 | | 22 | 216 | 67 | 142 | 89 | 113 | 107 | 93 | 81 | 85 | 109 | 121 | 151 | | 23 | 199 | 67 | 160 | 85 | 91 | 102 | 112 | 59 | 113 | 106 | 134 | 155 | | 24 | 171 | 77 | 163 | 82 | 98 | 115 | 118 | 56 | 149 | 109 | 118 | 145 | | 25 | 177 | 81 | 153 | 88 | 74 | 108 | 106 | 56 | 186 | 119 | 112 | 131 | | 26 | 133 | 79 | 161 | 73 | 59 | 121 | 84 | 58 | 218 | 119 | 118 | 114 | | 27 | 126 | 113 | 162 | 80 | 84 | 118 | 97 | 50 | 241 | 128 | 124 | 107 | | 28 | 120 | 132 | 142 | 106 | 106 | 118 | 102 | 51 | 235 | 107 | 103 | 89 | | 29 | 113 | 138 | 119 | 113 | 123 | 110 | 90 | | 233 | 113 | 92 | 74 | | 30 | 112 | 144 | 100 | 108 | 138 | 111 | 70 | | 231 | 112 | 75 | 65 | | 31 | 93 | 157 | | 111 | | 87 | 86 | | 205 | | 69 | | | Mean | 170.1 | 130.5 | 109.7 | 99.4 | 106.8 | 104.4 | 95.6 | 80.6 | 113.5 | 108.2 | 97.3 | 134.0 | | | ovisional | | | | | | | | | | | | ## Penticton 2800 MHz (10.7cm) Solar Flux Jul 2000 - Jun 2001 Adjusted to 1 AU | Day | Jul 00 | Aug | Sep | Oct | Nov | Dec | Jan 00 | Feb | Mar | Apr | May | Jun | |------|----------|---------|-----------|------------|--------|-------|--------|---------|----------------|--------|--------|-------| | 1 | 169.2 | 153.9 | 160.5 | 201.9 | 201.2 | 179.3 | 165.3 | 156.2 | 129.0 | 257.2 | 187.4~ | 136.8 | | 2 | 167.9 | 155.1 | 156.7 | 202.9 | 193.2 | 162.3 | 170.2 | 161.6 | 127.4 | 227.9 | 179.0 | 137.8 | | 3 | 161.5 | 158.8 | 156.7 | 192.1 | 195.5 | 158.9 | 164.2 | 159.0 | 137.3 | 223.1 | 175.1 | 149.5 | | 4 | 163.7 | 158.7 | 173.6 | 184.1 | 191.4 | 147.6 | 168.8 | 144.0 | 138.7 | 205.0 | 178.6 | 158.3 | | 5 | 174.4 | 163.2 | 183.1 | 173.7 | 183.1 | 142.7 | 170.5 | 160.7 | 153.4 | 207.8* | 163.5 | 158.0 | | • | 400.4 | 470.0 | 404 E | 4E7 O | 1740 | 136.9 | 173.4 | 165.3 | 155.4 | 192.0~ | 157.8 | 162.4 | | 6 | 180.1 | 170.8 | 181.5 | 157.9 | 174.9 | 139.9 | 173.4 | 159.6 | 174.0 | 180.0 | 140.9 | 169.8 | | 7 | 193.5 | 171.6 | 175.8 | 155.3 | 176.6 | | | 152.3 | 164.8 | 169.7 | 131.1 | 185.7 | | 8 | 217.1 | 175.6 | 165.7 | 148.6 | 169.5 | 134.1 | 161.5 | | | 165.4 | 131.1 | 182.4 | | 9 | 218.4 | 187.2 | 153.0 | 140.4 | 163.0 | 130.7 | 160.8 | 158.1 | 159.2 | 170.4 | 133.0 | 168.0 | | 10 | 252.7 | 185.9 | 142.5 | 139.1 | 150.4 | 142.1 | 157.4 | 156.5 | 158.0 | 170.4 | 133.0 | 100.0 | | 11 | 249.7 | 192.3 | 136.7 | 150.8 | 146.6 | 139.2 | 160.5 | 147.4 | 155.8 | 160.3 | 139.4 | 167.4 | | 12 | 325.1+ | 194.3 | 134.2 | 161.9 | 143.6 | 145.2 | 172.5 | 140.9 | 155.7 | 149.8 | 141.0 | 171.6 | | 13 | 239.6 | 190.9 | 134.8 | 167.2 | 140.6 | 159.5 | 178.3 | 137.8 | 145.6 | 137.8 | 141.9 | 187.1 | | 14 | 210.6 | 194.3 | 152.5 | 162.3 | 145.4 | 176.5 | 170.6 | 134.6 | 140.7 | 139.6 | 141.2 | 200.9 | | 15 | 220.1 | 198.9 | 161.1 | 160.1 | 143.2 | 181.9 | 163.8 | 131.8 | 134.7 | 135.1 | 145.2 | 203.2 | | 10 | 220.1 | 100.0 | | | 0.2 | .0 | | .0 | | | | | | 16 | 226.1 | 190.3 | 176.4 | 159.8 | 150.7 | 184.4 | 156.6 | 126.5 | 138.5 | 124.3 | 140.9 | 214.3 | | 17 | 235.8 | 181.5 | 183.2 | 153.0 | 159.6 | 190.4 | 147.0 | 126.8 | 132.9 | 127.1 | 150.8 | 211.2 | | 18 | 270.5 | 173.6 | 205.7 | 149.9 | 172.9 | 191.6 | 146.6 | 129.0 | 138.5 | 133.0 | 141.5 | 228.5 | | 19 | 258.0 | 160.8 | 208.8 | 156.5 | 170.7 | 192.2 | 147.7 | 134.0 | 145.7 | 145.8 | 144.6 | 201.7 | | 20 | 261.1 | 156.0 | 213.1 | 159.3 | 169.6 | 194.8 | 148.3 | 142.3 | 152.1 | 182.2 | 144.9 | 205.0 | | | | | | | | | | | | | | | | 21 | 259.0 | 154.9 | 226.7 | 156.5 | 180.9 | 188.2 | 146.7 | 140.5 | 158.2 | 193.0 | 153.8 | 206.9 | | 22 | 259.0 | 147.5 | 233.8 | 158.6 | 190.1 | 183.8 | 157.1 | 142.7 | 181.8 | 194.6 | 155.8 | 210.3 | | 23 | 224.3 | 139.9 | 226.7 | 164.8 | 200.1 | 184.7 | 162.0 | 142.2 | 178.9 | 198.6 | 162.8 | 213.0 | | 24 | 232.0 | 133.5 | 225.8 | 157.5 | 192.1 | 186.7 | 167.2 | 134.6 | 217.5 | 195.8 | 174.7 | 201.3 | | 25 | 208.2 | 136.0 | 226.8 | 162.0 | 197.0# | 180.9 | 163.4 | 132.2 | 215.7 | 196.3 | 166.1 | 188.4 | | 06 | 400.4 | 120.0 | 2247 | 160 A | 407 C | 100 6 | 160 F | 132.8 | 262.6 | 198.7 | 151.3 | 173.5 | | 26 | 180.1 | 139.9 | 224.7 | 168.9 | 197.0 | 182.6 | 160.5 | 132.0 | 202.0<br>272.4 | 193.3 | 151.3 | 152.8 | | 27 | 167.4 | 153.2 | 205.5 | 173.7 | 186.6 | 181.4 | 161.8 | | | 193.3 | 146.9 | 144.9 | | 28 | 162.7 | 163.2 | 203.0 | 179.7 | 190.3 | 179.3 | 162.6 | 129.4 | 272.6 | | | | | 29 | 157.9 | 166.5 | 192.6 | 184.5 | 183.2 | 175.5 | 160.5 | | 261.0 | 194.5 | 142.3 | 144.6 | | 30 | 154.5 | 167.9 | 194.0 | 191.0 | 187.0 | 176.1 | 154.9 | | 256.3 | 190.7 | 136.0 | 141.2 | | 31 | 152.4 | 165.9 | 400 5 | 190.5 | 474.6 | 163.9 | 148.8 | 440.4 | 245.3 | 470.0 | 136.6 | 470.0 | | Mean | | 167.2 | 183.8 | 166.6 | 174.9 | 168.2 | 161.3 | 143.1 | 176.1 | 179.3 | 152.0 | 179.2 | | NOTE | ±: #1800 | OUT rea | aina - bı | ırst iP at | 2000UT | : | | + Burst | in progr | ress. | | | NOTE: #1800UT reading - burst IP at 2000UT; <sup>+</sup> Burst in progress. <sup>~ 1700</sup>UT reading - burst IP at 2000UT; \* 2300UT reading - burst IP at 2000UT. ## | _ | Day of | Bartels<br>Cycle | Numi | spot<br>pers | Obs Flux<br>Penticton | SGMR | SGMR | SGMR | djusted<br>Pentic | SGMR | SGMR | SGMR | SGMR | SGMR | |------|--------|------------------|-------|--------------|-----------------------|---------|--------|--------|-------------------|--------|--------|-------|-------|-------| | Day | Year | Day | Int | Amer | (2800) | (15400) | (8800) | (4995) | (2800) | (2695) | (1415) | (610) | (410) | (245) | | 1 | 152 | 11 | 58 | 66 | 133.0 | 582 | 281 | 188 | 136.8 | 118 | 109 | 65 | 40 | 15 | | 2 | 153 | 12 | 99 | 107 | 134.0 | 371 | 219 | 142 | 137.8 | 106 | 98 | 58 | 36 | 14 | | 3 | 154 | 13 | 99 | 108 | 145.3 | 556 | 289 | 204 | 149.5 | 127 | 111 | 66 | 38 | 20 | | 4 | 155 | 14 | 96 | 114 | 153.8 | 576 | 290 | 221 | 158.3 | 135 | 117 | 68 | 44 | 41 | | 5 | 156 | 15 | 106 | 113 | 153.4 | 594 | 281 | 200 | 158.0 | 138 | 115 | 61 | 38 | 14 | | 6 | 157 | 16 | 119 | 128 | 157.7 | 581 | 277 | 199 | 162.4 | 142 | 118 | 61 | 40 | 23 | | 7 | 158 | 17 | 129 | 146 | 164.8 | 591 | 294 | 212 | 169.8 | 149 | 127 | 64 | 40 | 16 | | 8 | 159 | 18 | 142 | 167 | 180.2 | 590 | 293 | 220 | 185.7 | 155 | 133 | 74 | 47 | 25 | | 9 | 160 | 19 | 168 | 185 | 177.0 | 590 | 300 | 227 | 182.4 | 154 | 135 | 69 | 53 | 41 | | 10 | 161 | 20 | 159 | 177 | 163.0 | 594 | 307 | 225 | 168.0 | 155 | 133 | 69 | 44 | 23 | | 11 | 162 | 21 | 173 | 194 | 162.4 | 586 | 291 | 215 | 167.4 | 150 | 131 | 72 | 41 | 20 | | 12 | 163 | 22 | 171 | 183 | 166.4 | 563 | 306 | 225 | 171.6 | 152 | 129 | 71 | 43 | 17 | | 13 | 164 | 23 | 160 | 178 | 181.4 | 599 | 308 | 237 | 187.1 | 161 | 135 | 67 | 43 | 19 | | 14 | 165 | 24 | 180 | 190 | 194.7 | 609 | 327 | 260 | 200.9 | 176 | 144 | 70 | 46 | 23 | | 15 | 166 | 25 | 186 | 206 | 196.9 | 564 | 321 | 257 | 203.2 | 174 | 142 | 64 | 41 | 29 | | 16 | 167 | 26 | 191 | 204 | 207.6 | 594 | 325 | 261 | 214.3 | 182 | 146 | 60 | 38 | 22 | | 17 | 168 | 27 | 178 | 184 | 204.6 | 566 | 318 | 256 | 211.2 | 184 | 143 | 58 | 35 | 23 | | 18 | 169 | 1 | 153 | 162 | 221.3 | 586 | 309 | 238 | 228.5 | 184 | 146 | 64 | 40 | 28 | | 19 | 170 | 2 | 141 | 153 | 195.4 | 575 | 307 | 240 | 201.7 | 182 | 147 | 64 | 38 | 16 | | 20 | 171 | 3 | 136 | 153 | 198.5 | 577 | 312 | 241 | 205.0 | 178 | 144 | 66 | 39 | 17 | | 21 | 172 | 4 | 144 | 166 | 200.3 | 574 | 311 | 239 | 206.9 | 188 | 148 | 68 | 40 | 18 | | 22 | 173 | 5 | 151 | 170 | 203.6 | 568 | 322 | 250 | 210.3 | 182 | 149 | 68 | 44 | 31 | | 23 | 174 | 6 | 155 | 174 | 206.2 | 584 | 330 | 260 | 213.0 | 194 | 152 | 67 | 42 | 34 | | 24 | 175 | 7 | 145 | 172 | 194.8 | 569 | 304 | 233 | 201.3 | 178 | 140 | 69 | 47 | 28 | | 25 | 176 | 8 | 131 | 153 | 182.4 | 565 | 299 | 223 | 188.4 | 165 | 135 | 62 | 41 | 19 | | 26 | 177 | 9 | 114 | 134 | 167.9 | 579 | 296 | 215 | 173.5 | 159 | 130 | 61 | 39 | 15 | | 27 | 178 | 10 | 107 | 113 | 147.9 | 563 | 282 | 194 | 152.8 | 142 | 121 | 64 | 36 | 16 | | 28 | 179 | 11 | 89 | 94 | 140.2 | 553 | 275 | 184 | 144.9 | 129 | 115 | 64 | 36 | 15 | | 29 | 180 | 12 | 74 | 82 | 139.9 | 540 | 273 | 181 | 144.6 | 129 | 121 | 64 | 36 | 14 | | 30 | 181 | 13 | 65 | 75 | 136.6 | 573 | 275 | 185 | 141.2 | 122 | 113 | 57 | 35 | 15 | | MEAN | | | 134.0 | 148.4 | 173.7 | 570 | 297 | 221 | 179.2 | 156 | 130 | 65 | 40 | 21 | The International and American sunspot numbers shown above are preliminary values. NOTE: Radio flux values are from Sagamore Hill, Massachusetts, USA. # 1700UT reading - burst in progress at 2000UT. | | Smoo | thed S | unspot | Numbe | rs (Obs | erved a | and Pre | edicted) | for Par | ts of S | olar Cy | cles 22 | and 23 | |------|------|--------|--------|-------|---------|---------|---------|----------|---------|---------|---------|---------|--------| | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Avg | | 1993 | 71 | 69 | 67 | 64 | 60 | 56 | 55 | 52 | 48 | 45 | 41 | 38 | 56 | | 1994 | 37 | 35 | 34 | 34 | 33 | 31 | 29 | 27 | 27 | 27 | 26 | 26 | 31 | | 1994 | 37 | 35 | 34 | 34 | 33 | 31 | 29 | 27 | 27 | 27 | 26 | 26 | 31 | |-----------------------------------------|----------|---------|-----|------|----------|--------|------|------|----------|------------|---------|------|------| | 1995 | 24 | 23 | 22 | 21 | 19 | 18 | 17 | 15 | 13 | 12 | 11 | 11 | 17 | | 1996 | 10 | 10 | 10 | 9 | 8* | 9 | 8 | 8 | 8 | 9** | 10 | 10 | 8 | | 1997 | 11 | 11 | 14 | 17 | 18 | 20 | 23 | 25 | 28 | 32 | 35 | 39 | 23 | | 1998 | 44 | 49 | 53 | 57 | 59 | 63 | 65 | 68 | 69 | 71 | 73 | 78 | 62 | | 1999 | 83 | 85 | 84 | 85 | 90 | 93 | 94 | 98 | 102 | 108 | 111 | 111 | 95 | | 2000 | 113 | 117 | 120 | 121+ | 119 | 119 | 120 | 119 | 116 | 115 | 113 | 112 | 107 | | 2001 | 112 | 112 | 112 | 111 | 111 | 110 | 109 | 108 | 107 | 106 | 105 | 104 | 109 | | 000000000000000000000000000000000000000 | (3) | (6) | (8) | (13) | (17) | (18) | (18) | (19) | (22) | (23) | (23) | (23) | (16) | | | Solar Cy | /cle 22 | | | Solar Cy | cle 23 | | | Min, Max | , and Pred | ictions | | | <sup>\*</sup> May 1996 marks Cycle 22's mathematical minimum. \*\* October 1996 marks the consensus minimum NGDC is now using. Observed and Predicted Numbers. For the end of Cycle 22, and the rise and decline of Cycle 23, the table above lists observed smoothed sunspot numbers up to the one that includes the most recent monthly mean. We based these smoothed values on final monthly means through Mar 2001 and on provisional numbers thereafter. Table entries with numbers in parentheses below them denote predictions by the McNish-Lincoln method. (See page 9 in the Jul 1987 supplement to Solar-Geophysical Data.) Adding the number in parentheses to the predicted value generates the upper limit of the 90% confidence interval. Subtracting the number from the predicted value generates the lower limit. Consider, for example, the December 2001 prediction. There exists a 90% chance that in December 2001, the actual smoothed number will fall somewhere between 81 and 127. Points to Ponder. The McNish-Lincoln prediction method generates useful estimates of smoothed, monthly mean sunspot numbers for no more than 12 months ahead. Beyond 12 months, the predictions regress toward the mean of all 15 cycles of observations used in the computation. Moreover, the method remains very sensitive to the date defining the onset of the current cycle, that is, to the date of the most recent sunspot minimum. The new cycle predictions tabulated above are based on the consensus minimum value of 8.8 that occurred in October 1996. Note: Please visit http://www.sec.noaa.gov for solar minimum and Cycle 23 discussions. <sup>+</sup> April 2000 marks Cycle 23 maximum. | | | MM. W | | $M_{\Lambda}$ | W | "Mu | Vinny | | Www | MI. | MM | M | | |------------------|---------------|----------------|---------------|---------------|---------------|----------------|---------------|----------------------|----------------|----------------|-----------------------------------------|-----------------------------------------|-----------------| | ( | 1950 | 1952 1954 1956 | 1958 1960 | 1962 1964 | 1966 1968 | 1970 1972 1974 | 1976 1978 | 1980 1982 | 1984 1986 | 1988 1990 | 1992 1994 1996 | 1998 2000 | ) 2002 | | Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | | Dec | Mean | | 1950 | 101.6 | 94.8 | 109.7 | 113.4 | 106.2 | 83.6 | 91.0 | 85.2 | 51.3 | 61.4 | 54.8 | 54.1 | 83.9 | | 1951 | 59.9 | 59.9 | 55.9 | 92.9 | 108.5 | 100.6 | 61.5 | 61.0 | 83.1 | 51.6 | 52.4 | 45.8 | 69.4 | | 1952 | 40.7 | 22.7 | 22.0 | 29.1 | 23.4 | 36.4 | 39.3 | 54.9 | 28.2 | 23.8 | 22.1 | 34.3 | 31.5 | | 1953 | 26.5 | 3.9 | 10.0 | 27.8 | 12.5 | 21.8 | 8.6 | 23.5 | 19.3 | 8.2 | 1.6 | 2.5 | 13.9 | | 1954 | 0.2<br>23.1 | 0.5<br>20.8 | 10.9<br>4.9 | 1.8<br>11.3 | 0.8<br>28.9 | 0.2<br>31.7 | 4.8<br>26.7 | 8.4<br>40.7 | 1.5<br>42.7 | 7.0<br>58.5 | 9.2<br>89.2 | 7.6<br>76.9 | 4.4 m<br>38.0 | | 1955<br>1956 | 73.6 | 124.0 | 118.4 | 110.7 | 136.6 | 116.6 | 129.1 | 169.6 | 173.2 | 155.3 | 201.3 | 192.1 | 141.7 | | 1957 | 165.0 | 130.2 | 157.4 | 175.2 | 164.6 | 200.7 | 187.2 | 158.0 | 235.8 | 253.8 | 210.9 | 239.4 | 190.2 M | | 1958 | 202.5 | 164.9 | 190.7 | 196.0 | 175.3 | 171.5 | 191.4 | 200.2 | 201.2 | 181.5 | 152.3 | 187.6 | 184.8 | | 1959 | 217.4 | 143.1 | 185.7 | 163.3 | 172.0 | 168.7 | 149.6 | 199.6 | 145.2 | 111.4 | 124.0 | 125.0 | 159.0 | | 1960 | 146.3 | 106.0 | 102.2 | 122.0 | 119.6 | 110.2 | 121.7 | 134.1 | 127.2 | 82.8 | 89.6 | 85.6 | 122.3 | | 1961 | 57.9 | 46.1 | 53.0 | 61.4 | 51.0 | 77.4 | 70.2 | 55.8 | 63.6 | 37.7 | 32.6 | 39.9 | 53.9 | | 1962 | 38.7 | 50.3 | 45.6 | 46.4 | 43.7 | 42.0 | 21.8 | 21.8 | 51.3 | 39.5 | 26.9 | 23.2 | 37.6 | | 1963<br>1964 | 19.8<br>15.3 | 24.4<br>17.7 | 17.1<br>16.5 | 29.3<br>8.6 | 43.0<br>9.5 | 35.9<br>9.1 | 19.6<br>3.1 | 33.2<br>9.3 | 38.8<br>4.7 | 35.3<br>6.1 | 23.4<br>7.4 | 14.9<br>15.1 | 27.9<br>10.2 m | | 1965 | 17.5 | 14.2 | 11.7 | 6.8 | 24.1 | 15.9 | 11.9 | 8.9 | 16.8 | 20.1 | 15.8 | 17.0 | 15.1 | | 1966 | 28.2 | 24.4 | 25.3 | 48.7 | 45.3 | 47.7 | 56.7 | 51.2 | 50.2 | 57.2 | 57.2 | 70.4 | 47.0 | | 1967 | 110.9 | 93.6 | 111.8 | 69.5 | 86.5 | 67.3 | 91.5 | 107.2 | 76.8 | 88.2 | 94.3 | 126.4 | 93.8 | | 1968 | 121.8 | 111.9 | 92.2 | 81.2 | 127.2 | 110.3 | 96.1 | 109.3 | 117.2 | 107.7 | 86.0 | 109.8 | 105.9 M | | 1969 | 104.4 | 120.5 | 135.8 | 106.8 | 120.0 | 106.0<br>106.8 | 96.8<br>112.5 | 98.0<br>93.0 | 91.3<br>99.5 | 95.7<br>86.6 | 93.5<br>95.2 | 97.9<br>83.5 | 105.5<br>104.5 | | 1970 | 111.5 | 127.8 | 102.9 | 109.5 | 127.5 | | ***** | 00000000000000000000 | ******** | ********* | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | 1971 | 91.3 | 79.0 | 60.7 | 71.8 | 57.5<br>80.5 | 49.8<br>88.0 | 81.0<br>76.5 | 61.4<br>76.8 | 50.2<br>64.0 | 51.7<br>61.3 | 63.2<br>41.6 | 82.2<br>45.3 | 66.6<br>68.9 | | 1972<br>1973 | 61.5<br>43.4 | 88.4<br>42.9 | 80.1<br>46.0 | 63.2<br>57.7 | 42.4 | 39.5 | 23.1 | 25.6 | 59.3 | 30.7 | 23.9 | 23.3 | 38.0 | | 1974 | 27.6 | 26.0 | 21.3 | 40.3 | 39.5 | 36.0 | 55.8 | 33.6 | 40.2 | 47.1 | 25.0 | 20.5 | 34.5 | | 1975 | 18.9 | 11.5 | 11.5 | 5.1 | 9.0 | 11.4 | 28.2 | 39.7 | 13.9 | 9.1 | 19.4 | 7.8 | 15.5 | | 1976 | 8.1 | 4.3 | 21.9 | 18.8 | 12.4 | 12.2 | 1.9 | 16.4 | 13.5 | 20.6 | 5.2 | 15.3 | 12.6 m | | 1977 | 16.4 | 23.1 | 8.7 | 12.9 | 18.6 | 38.5 | 21.4 | 30.1 | 44.0 | 43.8 | 29.1 | 43.2 | 27.5 | | 1978 | 51.9<br>166.6 | 93.6<br>137.5 | 76.5<br>138.0 | 99.7<br>101.5 | 82.7<br>134.4 | 95.1<br>149.5 | 70.4<br>159.4 | 58.1<br>142.2 | 138.2<br>188.4 | 125.1<br>186.2 | 97.9<br>183.3 | 122.7<br>176.3 | 92.5<br>155.4 M | | 1979<br>1980 | 159.6 | 157.5 | 126.2 | 164.1 | 179.9 | 157.3 | 136.3 | 135.4 | 155.0 | 164.7 | 147.9 | 174.4 | 154.6 | | 2000000000000000 | 114.0 | 141.3 | 135.5 | 156.4 | 127.5 | 90.9 | 143.8 | 158.7 | 167.3 | 162.4 | 137.5 | 150.1 | 140.4 | | 1981<br>1982 | 111.2 | 163.6 | 153.8 | 122.0 | 82.2 | 110.4 | 106.1 | 107.6 | 118.8 | 94.7 | 98.1 | 127.0 | 115.9 | | 1983 | 84.3 | 51.0 | 66.5 | 80.7 | 99.2 | 91.1 | 82.2 | 71.8 | 50.3 | 55.8 | | 33.4 | 66.6 | | 1984 | 57.0 | 85.4 | 83.5 | 69.7 | 76.4 | 46.1 | 37.4 | 25.5 | 15.7 | 12.0 | | 18.7 | 45.9 | | 1985 | 16.5 | 15.9 | 17.2 | 16.2 | 27.5 | 24.2 | 30.7 | 11.1 | 3.9 | 18.6 | | 17.3 | 17.9 | | 1986 | 2.5 | 23.2 | 15.1 | 18.5 | 13.7 | 1.1 | 18.1<br>33.0 | 7.4 | 3.8 | 35.4<br>60.6 | | 6.8<br>27.1 | 13.4 m<br>29.4 | | 1987<br>1988 | 10.4<br>59.0 | 2.4<br>40.0 | 14.7<br>76.2 | 39.6<br>88.0 | 33.0<br>60.1 | 17.4<br>101.8 | 113.8 | 38.7<br>111.6 | 33.9<br>120.1 | 125.1 | 125.1 | 179.2 | 100.2 | | 1989 | 161.3 | 165.1 | 131.4 | 130.6 | 138.5 | 196.2 | 126.9 | 168.9 | 176.7 | 159.4 | | 165.5 | 157.6 M | | 1990 | 177.3 | 130.5 | 140.3 | 140.3 | 132.2 | 105.4 | 149.4 | 200.3 | 125.2 | 145.5 | 131.4 | 129.7 | 142.6 | | 1991 | 136.9 | 167.5 | 141.9 | 140.0 | 121.3 | 169.7 | 173.7 | 176.3 | 125.3 | 144.1 | 108.2 | 144.4 | 145.7 | | 1992 | 150.0 | 161.1 | 106.7 | 99.8 | 73.8 | 65.2 | 85.7 | 64.5 | 63.9 | 88.7 | 91.8 | 82.6 | 94.3 | | 1993 | 59.3 | | 69.8 | 62.2 | 61.3 | 49.8 | 57.9 | 42.2 | 22.4 | 56.4 | | 48.9 | 54.6 | | 1994 | 57.8 | | 31.7 | 16.1 | 17.8 | 28.0 | 35.1 | 22.5 | 25.7 | 44.0 | | 26.2 | 29.9 | | 1995 | 24.2 | | 31.1 | 14.0 | 14.5 | 15.6 | 14.5 | 14.3 | 11.8 | 21.1 | 9.0 | 10.0 | 17.5 | | 1996 | 11.5 | | 9.2<br>8.7 | 4.8<br>15.5 | 5.5<br>18.5 | 11.8<br>12.7 | 8.2<br>10.4 | 14.4<br>24.4 | 1.6<br>51.3 | 0.9<br>22.8 | | 13.3<br>41.2 | 8.6 m<br>21.5 | | 1997<br>1998 | 5.7<br>31.9 | | 54.8 | 53.4 | 56.3 | 70.7 | 66.6 | 92.2 | 92.9 | 55.5 | | 81.2<br>81.9 | 64.3 | | 1999 | 62.0 | | 68.8 | 63.7 | 106.4 | 137.7 | 113.5 | 93.7 | 71.5 | 116.7 | | 84.6 | 93.2 | | 2000 | 90.1 | | 138.5 | 125.5 | 121.6 | 124.9 | 170.1 | 130.5 | 109.7 | 99.4 | | 104.4 | 119.6 M | | 2001 | 95.6 | 80.6 | 113.5 | 108.2 | 97.3 | 134.0 | | | | | | | 104.9 | | | | | | | | | | | | | | | | Values are preliminary after Mar 01. For the yearly means, each 'M' marks a sunspot cycle maximum and each 'm' a minimum. ## $\mbox{\bf H}\alpha \ \ \mbox{\bf S} \ \mbox{\bf O} \ \mbox{\bf L} \ \mbox{\bf A} \ \mbox{\bf R} \ \mbox{\bf F} \ \mbox{\bf L} \ \mbox{\bf A} \ \mbox{\bf R} \ \mbox{\bf E} \ \mbox{\bf S}$ JUNE | Sta Day | Start<br>(UT) | Max<br>(UT) | End<br>(UT) | Lat | CMD | NOAA/<br>USAF<br>Region | CM<br>Mo | | Dur<br>(Min) | Imp<br>Opt Xray | See | Obs<br>Type | Area Measurement<br>Time Apparent Corr<br>(UT) (10-6 Disk) (Sq Deg) | Remarks | |--------------------|---------------|--------------|--------------|------------|------|-------------------------|----------|--------------|--------------|-------------------|--------|-------------|---------------------------------------------------------------------|--------------------| | - | | 0721 | 0328 | | | | | | 16 | В 9.0 | | | | 7.7E-04 | | GOES 01 | 0559 | 0321<br>0600 | 0603 | N18 | W90 | 9481 | 05 | 25.5 | 4 | SF 5.0 | 3 | Е | 26 | 7.72 04 | | L_svt0 | 0600 | 0600 | 0602 | N19 | W90 | 9481 | 05 | 25.5 | 2 | SF | 3 | Ε | 21 | | | GOES | 1157 | 1202 | 1206 | N110 | E0/. | 9475 | | | 9<br>8 | C 1.6<br>SF B 9.4 | | | | 6.2E-04<br>3.8E-04 | | GOES<br>HOLL | 1458<br>1500 | 1502<br>1502 | 1506<br>1507 | | | 9475 | 06 | 1.9 | 7 | SF B 9.4 | 3 | Ε | 23 | J.OL 04 | | -GOES | 1506 | 1509 | 1512 | <b>S24</b> | W57 | 9483 | | | 6 | SF C 1.4 | | | | 4.4E-04 | | L-HOLL | 1508 | 1508 | 1514 | | | 9483 | 05 | 28.3 | 6 | SF | 3 | Ε | 28 | 4 75-0/ | | GOES<br>HOLL | 1623<br>1624 | 1628<br>1626 | 1634<br>1630 | | | 9483<br>9483 | 05 | 28.3 | 11<br>6 | SF C 1.1<br>SF | 3 | Ε | 18 | 6.7E-04 | | HOLL | 1813 | 1813 | 1819 | | | 9483 | | 28.3 | 6 | SF | 3 | Ē | 17 | | | GOES | 2116 | 2121 | 2137 | | | | | | 21 | C 1.6 | | | | 1.8E-03 | | ⊢GOES 02 | 0006 | 0019 | 0032 | SUS | F35 | 9484 | | | 26 | SF C 1.3 | | | | 1.9E-03 | | HOLL | 0011 | 0016 | 0029 | | | 9484 | 06 | 4.6 | 18 | SF | 3 | E | 15 | 1172 05 | | HOLL | 0044 | 0049 | 0051 | | | 9484 | 06 | 4.6 | 7 | SF | 3 | Ε | 12 | | | GOES | 0429 | 0433 | 0436 | | | | | | 7 | C 1.2 | | | | 4.0E-04 | | GOES<br>GOES | 0528<br>0720 | 0532<br>0725 | 0549<br>0729 | | | | | | 21<br>9 | В 7.9<br>С 1.5 | | | | 9.2E-04<br>6.9E-04 | | GOES | 0815 | 0825 | 0844 | | | | | | 29 | c 1.3 | | | | 2.1E-03 | | -GOES | 1037 | 1040 | 1043 | | | 9484 | | | 6 | SF C 1.0 | _ | | | 3.1E-04 | | ∟svto | | 1041U | | 808 | E30 | 9484 | 06 | 4.7 | | SF<br>B 9.4 | 2 | E | 13 | F<br>4.0E-04 | | GOES<br>HOLL | 1322<br>1337 | 1327<br>1341 | 1331<br>1348 | s07 | F28 | 9484 | 06 | 4.7 | 9<br>11 | SF 8 9.4 | 3 | Ε | 13 | 4.0E-04<br>FH | | RAMY | 1339 | 1339 | 1344 | | | 9484 | 06 | 4.7 | | SF | 3 | Ē | 32 | F | | RAMY | 1350 | 1351 | 1354 | s08 | E27 | 9484 | 06 | 4.6 | 4 | SF | 3 | Ε | 95 | F | | GOES | 2006 | 2009 | 2013 | | | | | | 7 | В 5.6 | | | | 2.1E-04 | | LEAR 03 | 0034 | 0037U | 0119D | s06 | E21 | 9484 | 06 | 4.6 | 45D | SF | 3 | Е | 33 | | | GOES | 0656 | 0659 | 0701 | <b>S16</b> | E70 | 9488 | | | 5 | SF C 1.1 | | | | 2.3E-04 | | ∟LEAR | 0659 | 0700 | 0704 | | E70 | 0/00 | 06 | 8.6 | 5 | SF<br>CF D 7 0 | 3 | E | 26 | 2.7E-04 | | GOES<br>HOLL | 1351<br>1354 | 1355<br>1354 | 1358<br>1400 | | | 9488<br>9488 | 06 | 9.1 | 7<br>6 | SF B 7.8<br>SF | 3 | Е | 13 | 2.76-04 | | RAMY | 1354 | 1355 | 1400 | | | 9488 | 06 | 9.2 | | SF | 3 | Ē | 11 | | | GOES | 1403 | 1409 | 1431 | | | | | | 28 | C 1.1 | | | | 1.8E-03 | | GOES | 1858 | 1905 | 1913 | | | 9484<br>9484 | 04 | / E | 15<br>11 | SF C 1.0 | 3 | E | 17 | 8.3E-04<br>F | | -RAMY<br>-HOLL | 1900<br>1902 | 1902<br>1903 | 1911<br>1910 | | | 9484<br>9484 | 06<br>06 | 4.5<br>4.6 | 11<br>8 | SF<br>SF | 3 | E | 23 | r | | -GOES | 2004 | 2011 | 2028 | | | 9484 | | | 24 | SF C 2.4 | _ | _ | | 2.4E-03 | | -RAMY | 2007 | 2010 | 2026 | | | 9484 | 06 | 4.5 | 19 | SF | 3 | E | 48 | F | | └─HOLL<br>HOLL | 2009<br>2042 | 2010<br>2043 | 2026<br>2047 | | | 9484<br>9486 | 06<br>06 | 4.6<br>2.3 | | SF<br>SF | 3<br>3 | E<br>E | 44<br>22 | F | | HOLL | 2042 | 2043 | 2051 | | | 9486 | 06 | 2.3 | | SF | 3 | Ē | 14 | • | | -GOES | 2059 | 2122 | 2130 | | | 9488 | | | 31 | 1F C 5.6 | | | | 6.6E-03 | | -RAMY | 2101 | 2119 | 2142 | | | 9488 | 06 | 8.6 | | 1F | 3 | E | 209 | FH | | <sup>i</sup> —HOLL | 2101 | 2120 | 2147 | 519 | E02 | 9400 | Ub | 8.6 | 46 | 1F | 3 | E | 214 | FE | | ⊢GOES 04 | 0034 | 0046 | 0106 | N27 | W20 | 9486 | | | 32 | SF C 2.2 | | | | 3.7E-03 | | -HOLL | 0037 | 0047 | 0056 | | | 9486 | | 2.5 | | SF | 3 | Ē | 28 | F | | └─LEAR<br>GOES | 0042<br>0340 | 0045<br>0351 | 0049<br>0357 | N29 | W22 | 9486 | 06 | 2.3 | 7<br>17 | SF<br>C 1.2 | 3 | E | 26 | UF<br>9.9E-04 | | GOES | 0441 | 0449 | 0457 | | | | | | 16 | c 1.2 | | | | 1.0E-03 | | GOES | 0803 | 0812 | 0820 | | | 9488 | | | 17 | 1F M 2.4 | | | | 1.5E-02 | | SVTO | 0812E | | 0850 | | | 9488 | 06 | 8.7 | | 1F | 2 | E | 236 | 9.1E-04 | | ⊢GOES<br>⊢HOLL | 1510<br>1511 | 1515<br>1517 | 1523<br>1528 | | | 9488<br>9488 | 06 | 8.6 | 13<br>17 | SF C 1.4<br>SF | 3 | E | 31 | 9.1E-04<br>F | | SVTO | 1513 | 1514 | 1528 | | | 9488 | | 8.7 | 15 | SF | 2 | Ē | 49 | | | GOES | 1611 | 1633 | 1644 | N24 | W59 | 9474 | a- | | 33 | SF C 3.2 | | _ | | 3.8E-03 | | -SVTO | 1624 | 1627 | 1649 | | | 9474<br>97.77 | | 31.1<br>31.1 | | SF<br>SF | 2<br>3 | E<br>E | 48<br>36 | F<br>F | | └─HOLL<br>┌─HOLL | 1625<br>1850 | 1628<br>1853 | 1646<br>1859 | | | 9474<br>9488 | | 8.6 | | SF<br>SF | 3 | | 43 | Ī | | RAMY | 1852 | 1853 | 1859 | | | 9488 | | 8.5 | 7 | SF | 3 | Ē | 45 | | | GOES | 2106 | 2110 | 2113 | | | 9484 | <u> </u> | , . | 7 | SF C 1.3 | | _ | 27 | 5.2E-04 | | RAMY | 2107 | 2110 | 2116 | | | 9484<br>9484 | 06<br>06 | 4.6<br>4.5 | | SF<br>SF | 3<br>3 | E<br>E | 23<br>11 | F | | └─HOLL<br>┌─GOES | 2108<br>2156 | 2111<br>2204 | 2116<br>2211 | | | 9484<br>9486 | UD | 4.0 | 15 | SF<br>SF C 1.4 | | E | 11 | 1.1E-03 | | ∟HOLL | 2202 | 2203 | 2208 | | | 9486 | 06 | 2.3 | 6 | SF | 3 | Ε | 20 | F | | r-GOES | 2234 | 2259 | 2309 | | | 9484 | | | 35 | М 1.7 | • | | | 1.7E-02 | #### $H\alpha$ SOLAR FLARES JUNE | | Start | Max | End | | | NOAA/<br>USAF | CM | IP | Dur | I | mp | | 0bs | Time | Area Measurer<br>Apparent | ment<br>Corr | | |------------------|--------------|--------------|--------------|------|-----|---------------|-----------|--------------|----------|----------|----------------|--------|--------|------|---------------------------|--------------|--------------------| | Sta Day | | (UT) | (UT) | Lat | CMD | Region | | | (Min) | | Xray | See | | | (10-6 Disk) | | Remarks | | HOLL 04 | 2237<br>2251 | 2255<br>2252 | 2340<br>2314 | | | 9486<br>9484 | 06<br>06 | 2.4<br>4.7 | 63<br>23 | 1F<br>SF | | 3<br>3 | E<br>E | | 121<br>77 | | FE<br>F | | HOLL 05 | 0036<br>0441 | 0036<br>0451 | 0052<br>0501 | | | 9488<br>9488 | 06 | 8.5 | 16<br>20 | SF<br>2N | M 2.5 | 3 | E | | 24 | | F<br>2.0E-02 | | -LEAR | 0444 | 0446 | 0521 | s18 | E45 | 9488 | 06 | 8.6 | 37 | 2B | | 2 | Ε | | 342 | | ZF | | ∟svto<br>Goes | 0444<br>0756 | 0450<br>0801 | 0521<br>0805 | S18 | E44 | 9488 | 06 | 8.5 | 37<br>9 | 2N | в 9.3 | 3 | Ε | | 337 | | FH<br>4.3E-04 | | GOES | 1158 | 1205 | 1212 | | | | | | 14 | | C 1.6 | | | | | | 1.1E-03 | | GOES | 1416 | 1421 | 1424 | | | 9484<br>9484 | 06 | 4.5 | 8<br>22 | SN<br>SN | C 9.4 | 3 | Ε | | 92 | | 2.4E-03<br>F | | └─HOLL<br>GOES | 1419<br>1556 | 1421<br>1601 | 1441<br>1606 | 300 | WID | 7404 | 00 | 4.5 | 10 | | c 1.1 | , | _ | | 72 | | 5.6E-04 | | GOES | 2345 | 2348 | 2351 | | | | | | 6 | | В 7.9 | | | | | | 2.6E-04 | | GOES 06 | | 0137 | 0142 | | | | | | 8<br>9 | | C 1.7<br>B 8.1 | | | | | | 6.2E-04<br>4.0E-04 | | GOES<br>GOES | 0618<br>0813 | 0622<br>0817 | 0627<br>0827 | s19 | E22 | 9488 | | | 14 | | C 2.0 | | | | | | 1.2E-03 | | LEAR | 0816 | 0817 | 0831 | s19 | E22 | 9488 | 06 | 8.0 | 15 | SF | | 3 | Ε | | 52 | | F<br>1 FF 07 | | GOES<br>RAMY | 1027<br>1159 | 1033<br>1159 | 1050<br>1207 | N24 | W73 | 9475 | 05 | 31.8 | 23<br>8 | SF | C 1.3 | 3 | Ε | | 13 | | 1.5E-03 | | RAMY | 1226 | 1226 | 1234 | N23 | W73 | 9474 | 05 | 31.9 | 8 | SF | | 3 | Ε | | 11 | | | | RAMY<br>GOES | 1252<br>1302 | 1253<br>1306 | 1259<br>1310 | | | 9475<br>9488 | 06 | 1.4 | 7<br>8 | SF | c 1.1 | 3 | Е | | 13 | | F<br>4.7E-04 | | HOLL | 1304 | | 1331 | | | 9488 | 06 | 8.1 | 27 | SF | | 3 | Ε | | 60 | | 4112 04 | | HOLL | 1316 | 1317 | 1324<br>1352 | | | 9475<br>9488 | 05<br>06 | 31.9<br>8.2 | 8<br>8 | SF<br>SF | | 3<br>3 | E<br>E | | 13<br>15 | | F | | HOLL<br>HOLL | 1344<br>1350 | 1344<br>1352 | 1354 | | | 9474 | | 31.1 | 4 | SF | | 3 | E | | 18 | | r | | -HOLL | 1442 | 1444 | 1448 | | | 9484 | 06 | 4.7 | | SF | | 3 | E | | 22 | | 7 15 0/ | | GOES<br>RAMY | 1443<br>1444 | 1446<br>1445 | 1448<br>1447 | | | 9484<br>9484 | 06 | 4.7 | 5<br>3 | SF | C 1.1 | 3 | Ε | | 11 | | 3.1E-04 | | -HOLL | 1445 | 1446 | 1450 | N26 | W57 | 9486 | 06 | 2.2 | 5 | SF | | 3 | E | | 30 | | _ | | └─RAMY<br>HOLL | 1445<br>1608 | 1446<br>1610 | 1450<br>1617 | | | 9486<br>9488 | 06<br>06 | 2.1<br>8.2 | 5<br>9 | SF<br>SF | | 3<br>3 | E<br>E | | 24<br>19 | | F | | GOES | 1658 | 1704 | 1713 | | | | ••• | | 15 | | C 1.0 | _ | _ | | | | 8.4E-04 | | ⊢GOES<br>⊢HOLL | 1717<br>1723 | 1728<br>1726 | 1731<br>1737 | | | 9475<br>9475 | <b>05</b> | 31.5 | 14<br>14 | 1F<br>1F | c 3.0 | 3 | E | | 239 | | 1.5E-03<br>H | | RAMY | 1725 | 1726 | 1735 | N27 | W85 | 9474 | 05 | 31.1 | 10 | 1F | | 3 | Ε | | 158 | | H | | HOLL | 1805 | 1805 | 1810<br>1811 | | | 9474<br>9475 | | 31.7<br>31.5 | 5<br>6 | SF<br>SF | | 3<br>3 | E<br>E | | 60<br>37 | | | | └─RAMY<br>┌─HOLL | 1805<br>1846 | 1806<br>1847 | 1853 | | | 9473 | 06 | 8.1 | 7 | SF | | 3 | E | | 22 | | F | | ∟RAMY | 1847 | 1847 | 1851 | S20 | E17 | 9488 | 06 | 8.1 | 4 | SF | o / 7 | 3 | Е | | 12 | | F<br>2 /F 07 | | GOES<br>HOLL | 1910<br>1914 | 1920<br>1918 | 1924<br>1927 | | | 9474<br>9475 | 05 | 31.3 | 14<br>13 | 2F | C 4.7 | 3 | Е | | 264 | | 2.4E-03<br>FH | | HOLL | 1934 | 1937 | 1944 | S19 | E17 | 9488 | | 8.1 | 10 | SF | | 3 | E | | 25 | | UF | | _GOES<br>└HOLL | 2119<br>2122 | 2153<br>2124 | 2201<br>2156 | | | 9488<br>9488 | 06 | 8.5 | 42<br>34 | SF<br>SF | c 3.3 | 3 | E | | 96 | | 5.6E-03<br>F | | HOLL | 2144 | 2144 | 2150 | S06 | W30 | 9484 | 06 | 4.7 | 6 | SF | | 3 | Ε | | 17 | | • | | HOLL<br>LEAR | 2348<br>2355 | 2356<br>2355 | 2420<br>2404 | | | 9488<br>9488 | | 8.6<br>8.5 | | SF<br>SF | | 3<br>2 | E<br>E | | 21<br>12 | | | | GOES 07 | | 0042 | 0059 | | | | | | 28 | | c 1.5 | | | | | | 2.3E-03 | | GOES | 0103 | 0106 | 0109 | | | | | _ | 6 | | c 1.9 | | | | | | 5.4E-04 | | LEAR<br>—GOES | 0633<br>0810 | 0634<br>0813 | 0641<br>0815 | | | 9484<br>9488 | 06 | 4.6 | 8<br>5 | SF<br>SF | C 1.1 | 3 | Ε | | 27 | | F<br>2.7E-04 | | LEAR | 0813 | 0813 | 0816 | | | 9488 | 06 | 8.4 | 3 | SF | | 3 | Ε | | 23 | | U | | GOES | 1259 | 1303 | 1305<br>1345 | N10 | FEO | 9492 | 04 | 12.0 | 6<br>17 | SF | C 1.3 | 7 | _ | | 11 | | 3.7E-04 | | HOLL<br>RAMY | 1328<br>1329 | 1333<br>1330 | 1336 | | | 9492 | | 12.0<br>11.9 | | SF | | 3<br>3 | E<br>E | | 11 | | | | GOES | 1609 | 1614 | 1617 | s06 | W44 | 9484 | nΖ | | 8 | | C 2.5 | 3 | E | | 39 | | 7.7E-04<br>F | | └─RAMY<br>GOES | 1612<br>1905 | 1613<br>1910 | 1620<br>1914 | 5UD | W44 | 9484 | UĎ | 4.4 | 8<br>9 | SF | c 3.8 | | Ε | | 39 | | 1.2E-03 | | GOES | 2003 | 2007 | 2011 | | | | | | 8 | | C 6.4 | | | | | | 1.7E-03 | | GOES | 2102 | 2136 | 2142 | | | | | | 40 | | c 2.3 | | | | | | 4.4E-03 | | GOES 08 | | 0228 | 0242 | | | 9488 | ٠. | ٠, | 25 | | c 6.0 | | - | | 405 | | 6.5E-03 | | └─LEAR<br>GOES | 0220<br>0332 | 0228<br>0336 | 0323<br>0340 | \$17 | EU4 | 9488 | 06 | 8.4 | 63<br>8 | 1 N | C 1.5 | 3 | E | | 105 | | UF<br>7.4E-04 | | GOES | 0345 | | 0414 | | | | | | 29 | | C 2.1 | | | | | | 3.3E-03 | ## $H\alpha \quad S \ O \ L \ A \ R \quad F \ L \ A \ R \ E \ S$ JUNE | | Start | Max | End | | | NOAA/<br>USAF | CM | IP | Dur | I mp | | | 0bs | Time | Area Measure<br>Apparent | Corr | | |-----------------|---------------|---------------|--------------|------|-----|---------------|----------|-------------|-----------|------------|------------|--------|--------|------|--------------------------|----------|--------------------| | Sta Day | | (UT) | (UT) | Lat | CMD | Region | | | (Min) | Opt > | (ray | See | Туре | (UT) | (10-6 Disk) | (Sq Deg) | Remarks | | GOES 08 | | 1117 | 1124 | S08 | | | 04 | | 13 | SF C | 1.9 | 7 | _ | | 17 | | 1.3E-03 | | └─RAMY<br>GOES | 1113<br>1310 | 1116<br>1320 | 1130<br>1326 | SUB | W25 | | 06 | 6.6 | 17<br>16 | SF<br>C | 4.5 | 3 | E | | 17 | | 3.5E-03 | | GOES | 1558 | 1603 | 1607 | s09 | W24 | 9494 | | | 9 | SF C | | | | | | | 2.7E-03 | | -HOLL | 1600 | 1604 | 1633 | | | 9494 | 06 | 6.9 | 33 | SF | 4.0 | 3 | Ε | | 66 | | F<br>1 (F 07 | | -GOES<br>-HOLL | 1759<br>1800 | 1802<br>1801 | 1816<br>1817 | | | 9493<br>9493 | 06 | 12.8 | 17<br>17 | SF C<br>SF | 1.8 | 3 | Е | | 63 | | 1.6E-03<br>F | | RAMY | 1801 | 1801 | 1805 | | | 9493 | | 12.8 | 4 | SF | | 3 | Ē | | 26 | | F | | _GOES | 1918 | 1927 | 1934 | | | 9494 | | | 16 | SF M | 1.0 | _ | _ | | 70 | | 6.1E-03 | | └─HOLL<br>GOES | 1928<br>2044 | 1929<br>2050 | 1958<br>2054 | S09 | W30 | 9494 | 06 | 6.5 | 30<br>10 | SF | 5.1 | 3 | Ε | | 39 | | 1.9E-03 | | GOES | 2101 | 2108 | 2111 | | | | | | 10 | | 4.4 | | | | | | 2.2E-03 | | HOLL | | 21340 | | | | 9494 | 06 | 6.6 | 14D | 1F | | 3 | E | | 145 | | r | | HOLL<br>GOES | 2214<br>2214 | 2216<br>2216 | 2218<br>2219 | | | 9494<br>9494 | 06 | 6.7 | 4<br>5 | SF<br>SF C | 1 0 | 3 | E | | 11 | | F<br>5.7E-04 | | HOLL | 2215 | 2219 | 2224 | | W18 | 7474 | 06 | 7.6 | 9 | SF | 1.7 | 3 | Ε | | 25 | | J., L 01 | | GOES | 2245 | 2256 | 2307 | | | | | | 22 | | 6.5 | | | | | | 6.2E-03 | | GOES | 2312 | 2324 | 2350 | | | | | | 38 | С | 7.5 | | | | | | 1.5E-02 | | HOLL 09<br>GOES | 0049<br>0142 | 0049<br>0145 | 0055<br>0149 | N06 | E50 | 9493 | 06 | 12.8 | 6<br>7 | SF<br>C | 2.1 | 3 | Ε | | 21 | | 7.6E-04 | | GOES | 0230 | 0234 | 0246 | | | | | | 16 | | 1.9 | | | | | | 1.7E-03 | | GOES | 0255 | 0258 | 0302 | | | | | | 7 | | 2.3 | | | | | | 8.3E-04 | | GOES | 0509 | 0516 | 0521 | | | | | | 12 | | 3.7<br>3.9 | | | | | | 2.5E-03<br>1.7E-03 | | GOES<br>LEAR | 0533<br>0621F | 0537<br>0624U | 0541<br>0633 | s07 | W35 | 9494 | 06 | 6.6 | 8<br>12D | SF | 3.9 | 4 | Ε | | 17 | | F.72 03 | | LEAR | 0731 | 0739 | 0751 | | | 9494 | 06 | 6.6 | 20 | SF | | 4 | Ε | | 19 | | F | | GOES | 1006 | 1009 | 1013 | | | | | | 7 | | 1.1 | | | | | | 4.3E-04<br>2.4E-03 | | GOES<br>GOES | 1020<br>1020 | 1029<br>1029 | 1037<br>1038 | | | | | | 17<br>18 | | 2.9 | | | | | | 2.4E-03 | | GOES | 1308 | 1312 | 1316 | s08 | W38 | 9494 | | | 8 | SF C | | | | | | | 9.3E-04 | | HOLL | 1309 | 1312 | 1321 | | | 9494 | 06 | 6.9 | | SF | | 3 | E | | 19 | | F | | └─RAMY<br>HOLL | 1310<br>1329 | 1312<br>1344 | 1322<br>1444 | | | 9494<br>9494 | 06<br>06 | 6.7<br>6.9 | | SF<br>SF | | 3<br>3 | E<br>E | | 19<br>68 | | F<br>F | | -GOES | 1342 | 1343 | 1345 | | | 9488 | 00 | 0., | 3 | SF C | 2.0 | • | - | | 55 | | 3.5E-04 | | L-HOLL | 1343 | 1345 | 1349 | s16 | W14 | 9488 | 06 | 8.5 | 6 | SF | | 3 | E | | 17 | | F | | RAMY<br>HOLL | 1436<br>1449 | 1438<br>1450 | 1446<br>1454 | | | 9494<br>9494 | 06<br>06 | 6.7<br>7.0 | | SF<br>SF | | 3<br>3 | E<br>E | | 15<br>12 | | F | | -GOES | 1502 | 1507 | 1510 | | | 9494 | 00 | 7.0 | 8 | SF C | 1.3 | , | - | | ,_ | | 5.7E-04 | | RAMY | 1505 | 1506 | 1515 | s07 | W39 | 9494 | 06 | 6.7 | | SF | | 3 | Ε | | 19 | | | | L-HOLL | 1505 | 1508 | 1519<br>1536 | | | 9494<br>9494 | 06 | 6.8 | | SF<br>SF | | 3<br>3 | E<br>E | | 23<br>29 | | F | | -RAMY<br>-HOLL | 1529<br>1530 | 1531<br>1531 | 1534 | | | 9494<br>9494 | 06<br>06 | 6.6 | | SF | | 3 | E | | 17 | | r | | RAMY | 1552 | 1554 | 1608 | | | 9494 | 06 | 6.7 | | SF | | 3 | Ε | | 25 | | | | HOLL | 1621 | 1624 | 1628 | | | 9487 | 06 | 8.7 | | SF | 4 / | 3 | E | | 15 | | 1 55-07 | | -GOES<br>-RAMY | 1625<br>1628 | 1631<br>1629 | 1643<br>1640 | | | 9489<br>9489 | 06 | 9.8 | 18<br>12 | SF C<br>SF | 1.0 | 3 | Ε | | 20 | | 1.5E-03 | | HOLL | 1628 | 1629 | 1641 | N16 | E00 | 9489 | 06 | | | SF | | 3 | Ē | | 25 | | | | -GOES | 1650 | 1655 | 1701 | s06 | W41 | 9494 | ٠, | , . | 11 | SF C | 1.4 | _ | _ | | 40 | | 9.0E-04 | | └─RAMY<br>HOLL | 1653<br>1829 | 1701<br>1830 | 1705<br>1834 | | | 9494<br>9493 | | 6.6<br>13.2 | | SF<br>SF | | 3<br>3 | E<br>E | | 12<br>38 | | F<br>F | | -GOES | 1832 | 1834 | 1836 | | | 9494 | 00 | , , , . 2 | 4 | SF C | 2.6 | , | - | | 30 | | 6.0E-04 | | └─HOLL | 1833 | 1839 | 1855 | s08 | W43 | 9494 | | 6.5 | 22 | SF | | 3 | E | | 99 | | F | | HOLL | 1835<br>1910 | 1839<br>1921 | 1845<br>1929 | | | 9493<br>9494 | 06 | 13.2 | 10<br>19 | SF<br>1F C | 2 4 | 3 | E | | 72 | | F<br>2.7E-03 | | GOES<br>HOLL | 1910 | 1921 | 1941 | | | 9494<br>9494 | 06 | 6.8 | | 1F C | 2.0 | 3 | Ε | | 101 | | UF | | HOLL | 1913 | 1914 | 1917 | N20 | W05 | 9489 | 06 | 9.4 | 4 | SF | | 3 | Ε | | 38 | | | | HOLL | 2049 | 2057 | 2100 | | | 9494 | 06 | 6.6 | | SF | 7 7 | 3 | Ε | | 15 | | F<br>1.1E-02 | | GOES<br>HOLL | 2101<br>2102 | 2119<br>2119 | 2215<br>2254 | | | 9494<br>9494 | 06 | 6.5 | 74<br>112 | SF C<br>SF | ٥.٥ | 3 | Е | | 60 | | F F | | GOES | 2332 | 2335 | 2337 | s07 | W39 | 9494 | | | 5 | SF C | 1.2 | | | | | | 3.5E-04 | | └─HOLL | 2335 | 2336 | 2339 | | | 9494 | 06 | 7.1 | | SF | 10 | 3 | E | | 34 | | 1.2E-03 | | GOES<br>HOLL | 2344<br>2345 | 2350<br>2350 | 2356<br>2403 | | | 9493<br>9493 | 06 | 12.8 | 12<br>18 | SF C<br>SF | 1.0 | 3 | Ε | | 53 | | 1.26-03 | | _GOES 10 | 0057 | 0104 | 0108 | \$08 | W42 | 9494 | | | 11 | SF C | 9.7 | | | | | | 3.7E-03 | | HOLL | 0100 | 0104 | 0123 | | | 9494 | | 6.9 | 23 | SF | | 3 | E | | 90 | | | | LEAR | 0102 | 0106 | 0146 | S08 | W42 | 9494 | 06 | 6.9 | 44 | SF | , | 3 | E | | 32 | | | #### $H\alpha \quad S \ O \ L \ A \ R \quad F \ L \ A \ R \ E \ S$ JUNE | <del></del> | | | | | | NOAA/ | | | D | | | | 0h - | | Area Measu | | | |------------------|---------------|---------------|---------------|-------------|------|----------------|----------|--------------|--------------|----------|----------------|--------|-------------|--------------|------------|-----------------------|--------------------| | Sta Day | Start<br>(UT) | Max<br>(UT) | End<br>(UT) | Lat | CMD | USAF<br>Region | CM<br>Mo | | Dur<br>(Min) | | mp<br>Xray | See | 0bs<br>Type | Time<br>(UT) | | t Corr<br>k) (Sq Deg) | Remarks | | LEAR 10 | | 0142 | 0200 | s16 | W13 | 9488 | 06 | 9.1 | 18 | SF | c 2.7 | 3 | E | | 10 | | F<br>1.4E-03 | | GOES<br>GOES | 0436<br>0620 | 0440<br>0626 | 0445<br>0645 | | | | | | 9<br>25 | | C 8.7 | | | | | | 1.4E-03 | | LEAR | 0646E<br>0711 | 0646U<br>0716 | 0647D<br>0719 | s07 | W48 | 9494 | 06 | 6.7 | 1D<br>8 | SF | C 4.2 | 2 | Е | | 13 | | 1.8E-03 | | GOES<br>┌─LEAR | | | 0719<br>0912D | s08 | W50 | 9494 | 06 | 6.6 | 29D | SF | C 4.2 | 2 | Ε | | 53 | | 1.02 03 | | LGOES | 0851 | 0902 | 0913 | 808 | W50 | 9494 | | | 22<br>8 | | C 6.3 | | | | | | 6.5E-03<br>1.8E-03 | | GOES<br>┌─RAMY | 0928<br>1111 | 0932<br>1125 | 0936<br>1152 | s07 | W51 | 9494 | 06 | 6.6 | 41 | SF | L 4.4 | 3 | E | | 43 | | F.0E-03 | | L-GOES | 1112 | 1126 | 1150 | | | 9494 | 04 | 17 0 | 38 | | C 2.2 | 7 | - | | 18 | | 4.4E-03<br>F | | RAMY<br>RAMY | 1137<br>1138 | 1141<br>1139 | 1146<br>1146 | | | 9493<br>9489 | | 13.0<br>10.0 | 9<br>8 | SF<br>SF | | 3<br>3 | E<br>E | | 17 | | F | | GOES | 1152 | 1156 | 1159 | | | 9487 | 04 | 0 E | 7 | | C 2.7 | 3 | _ | | 33 | | 9.7E-04 | | └─RAMY<br>┌─GOES | 1154<br>1210 | 1154<br>1214 | 1200<br>1215 | | | 9487<br>9497 | UB | 8.5 | 6<br>5 | SF<br>SF | C 1.9 | 3 | E | | 33 | | F<br>4.8E-04 | | ∟RAMY | 1214 | 1215 | 1220 | <b>S12</b> | E34 | | 06 | 13.1 | 6 | SF | | 3 | Ε | | 12 | | 1 (5 07 | | GOES<br>RAMY | 1241<br>1243 | 1247<br>1247 | 1253<br>1253 | | | 9494<br>9494 | 06 | 6.7 | 12<br>10 | SF | C 2.4 | 3 | Е | | 25 | | 1.6E-03<br>F | | GOES | 1511 | 1517 | 1526 | | | | | | 15 | | C 1.4 | _ | | | | | 1.2E-03 | | HOLL<br>⊢GOES | 1542<br>1543 | 1542<br>1548 | 1546<br>1554 | | | 9497<br>9494 | 06 | 13.2 | 4<br>11 | SF<br>SF | C 2.5 | 3 | E | | 17 | | 1.4E-03 | | ∟HOLL | 1545 | 1547 | 1611 | s07 | W55 | 9494 | 06 | 6.5 | 26 | SF | | 3 | Ε | | 35 | | F | | GOES<br>HOLL | 1718<br>1725 | 1726<br>1726 | 1730<br>1730 | | | 9489<br>9489 | 06 | 9.7 | 12<br>5 | SF<br>SF | C 1.1 | 3 | Е | | 11 | | 7.3E-04 | | -GOES | 1737 | 1739 | 1740 | S08 | W49 | 9494 | | | 3 | SF | C 1.0 | | | | | | 1.7E-04 | | └─HOLL<br>┌─GOES | 1739<br>1944 | 1740<br>1949 | 1743<br>1953 | | | 9494<br>9487 | 06 | 7.1 | 4<br>9 | SF | C 2.4 | 3 | E | | 21 | | 9.3E-04 | | HOLL | 1947 | 1949 | 1953 | N21 | W30 | 9487 | 06 | 8.5 | 6 | SF | | 3 | Ε | | 49 | | F | | GOES<br>GOES | 2111<br>2341 | 2123<br>2346 | 2134<br>2353 | N28 | W26 | 9487 | | | 23<br>12 | | C 2.0<br>C 1.3 | | | | | | 2.4E-03<br>8.9E-04 | | ⊢GOES 11 | | 0020 | 0036 | <b>SU</b> 2 | u50 | 9494 | | | 24 | | c 2.3 | | | | | | 2.6E-03 | | LEAR | 0015 | 0019 | 0025 | | | 9494 | 06 | 6.6 | 10 | SF | | 3 | Ε | | 20 | | F | | GOES | 0423 | 0451 | 0532 | | | | | | 69<br>38 | | C 5.0<br>C 7.1 | | | | | | 1.4E-02<br>1.1E-02 | | GOES<br>GOES | 0533<br>1006 | 0552<br>1010 | 0611<br>1017 | | | | | | 11 | | C 1.6 | | | | | | 9.3E-04 | | GOES | 1034 | 1040 | 1047 | W2E | 70 | 0/07 | ۰. | | 13 | | C 2.0 | 7 | _ | | 18 | | 1.3E-03 | | -HOLL<br>RAMY | 1402<br>1403 | 1403<br>1403 | 1407<br>1406 | | | 9487<br>9487 | 06<br>06 | 8.6<br>8.6 | 5<br>3 | SF<br>SF | | 3<br>3 | E<br>E | | 10 | | F | | _GOES | 1436 | 1446 | 1453 | N19 | W23 | 9489 | • | | 17 | | C 2.0 | - | _ | | 74 | | 1.7E-03 | | ⊢HOLL<br>RAMY | 1438<br>1438 | 1444<br>1444 | 1454<br>1455 | | | 9489<br>9489 | 06<br>06 | 9.8 | 16<br>17 | SF<br>SF | | 3 | E<br>E | | 31<br>26 | | F<br>F | | GOES | 1524 | 1545 | 1600 | | | | | | 36 | | C 2.1 | | | | | | 3.3E-03 | | -GOES<br>-HOLL | 2047<br>2048 | 2052<br>2051 | 2059<br>2101 | | | 9488<br>9488 | 06 | 8.7 | 12<br>13 | SF | C 4.3 | 3 | Ε | | 59 | | 2.5E-03<br>F | | L_RAMY | 2048 | 2051 | 2101 | | | | | 8.7 | 13 | SF | | 3 | | | 56 | | F | | GOES | 2127 | 2130 | 2134 | | | | | | 7 | | C 1.9 | | | | | | 6.9E-04 | | GOES 12 | 0035<br>0036 | 0036<br>0036 | 0039<br>0039 | N21 | W03 | 9492<br>9492 | 06 | 11.8 | 4<br>3 | SF<br>SF | C 1.2 | 3 | E | | 14 | | 2.7E-04<br>F | | ∟LEAR<br>GOES | 0321 | 0334 | 0402 | NZI | WUJ | 7476 | 00 | 11.0 | 41 | | c 3.0 | | L | | 14 | | 6.6E-03 | | GOES | 0408 | 0430 | 0441 | NOE | 11/7 | 0/97 | | | 33 | | C 5.1<br>C 1.7 | | | | | | 8.0E-03 | | GOES<br>LEAR | 0704<br>0704 | 0707<br>0709 | 0711<br>0717 | | | 9487<br>9487 | 06 | 8.6 | 7<br>13 | SF | C 1.7 | 3 | Ε | | 23 | | 6.9E-04 | | GOES | 0711 | 0719 | 0733 | S15 | W52 | 9488 | | | 22 | 1N | C 6.7 | | | | | | 6.9E-03 | | LEAR<br>SVTO | 0713<br>0713 | 0715<br>0717 | 0748<br>0740 | | | 9488<br>9488 | | 8.4<br>8.3 | | 1N<br>SF | | 3<br>3 | E<br>E | | 213<br>155 | | FH<br>FH | | GOES | 0857 | 0933 | 0940 | | | | | | 43 | | C 3.2 | | | | | | 6.5E-03 | | _GOES<br>□RAMY | 1242<br>1244 | 1257<br>1246 | 1303<br>1259 | | | 9487<br>9487 | 06 | 8.7 | 21<br>15 | SF<br>SF | C 2.1 | 3 | E | | 11 | | 2.0E-03 | | RAMY | 1533 | 1533 | 1535 | s06 | W81 | 9494 | | 6.6 | 2 | SF | | 3 | Ē | | 18 | | F<br>1 75 07 | | GOES<br>RAMY | 1658<br>1700 | 1704<br>1705 | 1710<br>1711 | | | 9494<br>9494 | 06 | 6.8 | 12<br>11 | SF<br>SF | C 2.9 | 3 | E | | 34 | | 1.7E-03<br>F | | GOES | 1739 | 1745 | 1752 | | , | | | | 13 | | C 3.3 | | - | | | | 2.4E-03 | | GOES<br>GOES | 1840<br>2051 | 1909<br>2056 | 1924<br>2101 | | | | | | 44<br>10 | | C 2.5<br>C 2.8 | | | | | | 5.1E-03<br>1.6E-03 | | GOES | 2118 | 2138 | 2153 | | | | | | 35 | | c 6.0 | | | | | | 1.0E-02 | | GOES 13 | 0007 | 0030 | 0052 | | | | | | 45 | | c 5.3 | | | | | | 1.1E-02 | #### $H\alpha \quad S \ O \ L \ A \ R \quad F \ L \ A \ R \ E \ S$ JUNE | Sta Day GOES 13 GOES GOES | | (UT) | (UT) | | | Domion | | IP<br>Day | Dur | | Imp<br>t Xray | 500 | Obs | Time | Apparent (10-6 Disk) | Corr | Remarks | |---------------------------|--------------|--------------|---------------|-------------|-------------|--------------|----|--------------|----------|----------|----------------|--------|--------|------|----------------------|----------|--------------------| | GOES | 0120 | | | Lat | CMD | Region | MU | vay | (Min) | ОР | | 366 | Type | (01) | (10-0 DISK) | (3q Deg) | | | | | 0134 | 0139 | | | | | | 10 | | C 2.4 | | | | | | 1.3E-03<br>1.1E-02 | | | 0303 | 0330 | 0343<br>0444 | c25 | E7/. | 0502 | | | 40<br>22 | 1 = | C 6.2<br>M 2.0 | | | | | | 1.7E-02 | | -LEAR | 0422<br>0426 | 0433 | 0510D | | | 9502<br>9502 | 06 | 18.9 | 44D | 1F | M 2.0 | 2 | Ε | | 100 | | F.72 02 | | GOES | 0742 | 0747 | 0753 | | E80 | 7302 | 00 | 10.7 | 11 | | C 2.4 | _ | _ | | 100 | | 1.4E-03 | | -LEAR | 0744 | 0746 | 0803 | | E80 | | 06 | 19.4 | 19 | SF | | 2 | Ε | | 97 | | F | | GOES | 0802 | 0806 | 0811 | | | | | | 9 | | C 2.8 | | | | | | 1.3E-03 | | GOES | 0823 | 0827 | 0842 | N20 | W48 | 9489 | | | 19 | SF | C 3.7 | | | | | | 3.6E-03 | | -LEAR | 0828 | 0830 | 0904 | | | 9489 | | 9.7 | 36 | SF | | 3 | Ε | | 36 | | | | RAMY | 1045 | 1045 | 1048 | N22 | W44 | 9489 | 06 | 10.1 | 3 | SF | | 3 | Ε | | 25 | | | | GOES | 1109 | 1115 | 1117 | | | | | | 8 | 4 | C 1.8 | | | | | | 8.2E-04 | | GOES | 1122 | 1142 | 1151 | | | 9502 | 04 | 10 4 | 29 | | м 7.8 | 7 | _ | | 187 | | 5.3E-02<br>UH | | -RAMY | 1135<br>1214 | 1139<br>1215 | 1218<br>1217 | | | 9502<br>9487 | 06 | 18.6<br>8.4 | 43<br>3 | 1N<br>SF | | 3<br>3 | E<br>E | | 15 | | Un | | RAMY<br>RAMY | 1311 | 1311 | 1316 | | | 9489 | 06 | 9.9 | 5 | SF | | 3 | E | | 10 | | F | | -HOLL | 1417 | 1418 | 1433 | | | 9489 | 06 | 9.8 | 16 | SF | | 3 | Ē | | 52 | | F | | -RAMY | 1417 | 1422 | 1429 | | | 9489 | 06 | 9.9 | 12 | SF | | 3 | Ē | | 55 | | - | | -GOES | 1620 | 1628 | 1635 | | | 9502 | •• | , . , | 15 | | C 9.1 | _ | _ | | | | 5.6E-03 | | -RAMY | 1621 | 1627 | 1640 | N21 | W49 | 9489 | 06 | 9.9 | 19 | SF | | 3 | Ε | | 75 | | Н | | -HOLL | 1621 | 1628 | 1639 | N20 | W49 | 9489 | 06 | 9.9 | 18 | SF | | 4 | E | | 77 | | Н | | -HOLL | 1621 | 1628 | 1702 | | | 9502 | | 18.7 | 41 | SF | | 3 | E | | 71 | | FH | | RAMY | 1625 | 1628 | 1645 | | | 9502 | | | 20 | SF | | 3 | E | | 45 | | F<br>- | | -HOLL | 1654 | 1655 | 1700 | | | 9489 | 06 | 9.6 | 6 | SF | | 3 | E | | 32 | | F | | L-RAMY | 1654 | 1656 | 1706 | | | 9489 | 06 | 9.6 | 12 | SF | | 3 | E | | 39<br>27 | | F | | HOLL | 1704 | 1712 | 1715 | \$27 | E04 | 9502 | 06 | 18.7 | 11<br>12 | SF | c 3.9 | 3 | E | | 23 | | 2.3E-03 | | GOES | 1843<br>1952 | 1849<br>1957 | 1855<br>1959 | พวก | U52 | 9489 | | | 7 | e E | C 7.6 | | | | | | 1.9E-03 | | GOES<br>HOLL | 1954 | 1956 | 2009 | | | 9489 | 06 | 9.8 | 15 | SF | | 4 | Ε | | 97 | | 11.72 03 | | GOES | 2241 | 2247 | 2255 | NEO | HJL | 7407 | - | 7.0 | 14 | ٥. | C 2.9 | - | - | | ,, | | 2.1E-03 | | HOLL | 2311 | 2313 | 2324 | N04 | W33 | 9495 | 06 | 11.5 | 13 | SF | | 3 | E | | 14 | | | | LEAR 14 | 4 0101E | 01120 | 0120D | N20 | <b>W</b> 55 | 9489 | 06 | 9.8 | 19D | SF | | 2 | Ε | | 31 | | | | GOES | 0205 | 0219 | 0239 | | | | | | 34 | | C 3.2 | | | | | | 5.5E-03 | | LEAR | 0304 | 0305 | 0316 | | | 9487 | 06 | 8.6 | | SF | | 3 | Ε | | 58 | | | | -GOES | 0344 | 0349 | 0358 | | | 9489 | | | 14 | | c 3.4 | _ | _ | | | | 2.5E-03 | | LEAR | 0346 | 0350 | 0410 | | | 9489 | 06 | 9.9 | | SF | | 3 | Ε | | 43 | | 2.0E-02 | | GOES<br>SVTO | 0933<br>0937 | 0943<br>0938 | 1037<br>1002 | | | 9489<br>9489 | 06 | 10.0 | 64<br>25 | SF | C 6.5 | 2 | Ε | | 31 | | FH FH | | SVTO | 1005 | 1006 | 1018 | | | 9492 | | 11.8 | | SF | | 3 | E | | 19 | | F | | GOES | 1659 | 1703 | 1713 | | | 9495 | 00 | 11.0 | 14 | | C 4.4 | , | _ | | 17 | | 2.7E-03 | | -RAMY | 1702 | 1702 | 1711 | | | 9495 | 06 | 11.3 | | SF | | 3 | E | | 60 | | Н | | HOLL | 1702 | 1703 | 1711 | | | 9495 | | 11.3 | | SF | | 3 | E | | 84 | | Н | | GOES | 2004 | 2014 | 2024 | | | | | | 20 | | C 2.9 | | | | | | 3.0E-03 | | GOES 15 | 5 0159 | 0210 | 0218 | | | | | | 19 | | C 2.1 | | | | | | 2.0E-03 | | LEAR | 0520 | 0520 | 0524 | | | 9492 | | 11.9 | | SF | | 3 | Ε | | 10 | | _ | | LEAR | 0524 | 0525 | 0529 | | | 9497 | 06 | 13.2 | | SF | | 3 | E | | 14 | | F | | GOES | 0634 | 0641 | 0650 | | | 9502 | | | 16 | | c 3.8 | | _ | | | | 2.8E-03 | | -svto | | 0639U | | | | | | 19.1 | | SF | | 3 | E | | 40 | | F | | LEAR | 0637 | 0639 | 0655 | | | 9502<br>9492 | 00 | 19.0 | 18<br>23 | SF | C 4.5 | 3 | E | | 44 | | F<br>5.5E-03 | | -GOES | 0651<br>0652 | 0704<br>0655 | 0714<br>0806D | | | | 06 | 11.8 | | SF | | 3 | Ε | | 58 | | F. 5.50 05 | | LEAR<br>SVTO | 0654 | | 0702D | | | | | 11.8 | | SF | | 3 | E | | 54 | | • | | GOES | 0849 | 0853 | 0857 | NLO | | 7472 | - | | 8 | ٠. | C 2.6 | | - | | | | 1.1E-03 | | -GOES | 1001 | 1013 | 1020 | s26 | E41 | 9502 | | | 19 | 1 N | M 6.3 | | | | | | 4.2E-02 | | SVTO | 1005 | 1008 | 1108 | | | 9502 | 06 | 18.6 | | 1 N | | 3 | E | | 160 | | FH | | RAMY | 1240 | 1240 | 1246 | | | 9489 | | 9.9 | | SF | : | 3 | E | | 11 | | | | _GOES | 1615 | 1620 | 1626 | <b>\$16</b> | E18 | 9501 | | | 11 | | C 2.2 | | | | | | 1.2E-03 | | -HOLL | 1617 | 1618 | 1626 | | | 9501 | | 17.0 | | SF | : | 3 | Ε | | 40 | | FH | | RAMY | 1618 | 1618 | 1625 | | | 9501 | | 17.0 | | SF | | 3 | E | | 26 | | | | HOLL | 1727 | 1727 | 1733 | s26 | E36 | 9502 | 06 | 18.5 | | SF | | 3 | E | | 15 | | , | | GOES | 2007 | 2012 | 2030 | | | | | | 23 | | C 3.7 | | | | | | 4.0E-03 | | GOES | 2214 | 2226 | 2239 | | | 9506 | ٠, | 24 . | 25 | | C 9.9 | | _ | | 447 | | 1.1E-02 | | └-HOLL | 2217 | 2223 | 2239 | | | 9506 | | 21.4 | | 1F | | 3 | E | | 113 | | F | | HOLL<br>HOLL | 2241<br>2249 | 2242<br>2253 | 2247<br>2307 | | | 9502<br>9502 | | 19.1<br>18.5 | | S F | | 3<br>3 | E<br>E | | 13<br>30 | | F<br>F | | GOES 1 | 6 0146 | 0158 | 0206 | | | | | | 20 | | c 5.0 | | | | | | 4.4E-03 | ### $H\alpha \quad S \ O \ L \ A \ R \quad F \ L \ A \ R \ E \ S$ JUNE | Sta Day | Start<br>(UT) | Max<br>(UT) | End<br>(UT) | Lat | CMD | NOAA/<br>USAF<br>Region | CMP<br>Mo Day | Dur<br>(Min) | Imp<br>Opt Xray | See | 0bs<br>Type | Area Measurement<br>Time Apparent Corr<br>(UT) (10-6 Disk) (Sq Deg) | Remarks | |--------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|----------------------------|-----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------| | LEAR<br>LEAR<br>LEAR | 0328<br>0419<br>0458<br>0623 | 0247<br>0331<br>0421<br>0500<br>0623 | 0252<br>0333<br>0432<br>0517<br>0636 | N04<br>N04 | W64<br>W65 | 9506<br>9495<br>9495 | 06 21.3<br>06 11.4<br>06 11.4 | 22<br>5<br>13<br>19<br>13 | C 2.2<br>C 4.4<br>SF<br>SF<br>SF | 3 3 3 | E<br>E | 20<br>45<br>16 | 3.2E-03<br>1.0E-03 | | GOES<br>SVTO | 0648<br>0657<br>0806<br>0934 | 0709<br>0708<br>0807<br>0934 | 0718<br>0721<br>0809<br>0937 | N07<br>N07 | W64<br>W64 | 9495<br>9495<br>9495<br>9495 | 06 11.5<br>06 11.5<br>06 11.4 | 30<br>24<br>3<br>3 | SF<br>SF C 1.9<br>SF<br>SF | 3<br>3<br>3 | E<br>E<br>E | 29<br>11<br>12 | 2.5E-03 | | GOES<br>RAMY<br>—GOES | 1103<br>1317<br>1853<br>1855 | 1118<br>1317<br>1913<br>1858 | 1215<br>1321<br>1930<br>1957 | N24<br>N21 | <b>W</b> 90<br>E50 | 9489<br>9505<br>9505 | 06 9.6<br>06 20.6 | 72<br>4<br>37<br>62 | C 2.8<br>SF<br>SF C 3.9<br>SF | 3 | E<br>E | 13<br>73 | 1.1E-02<br>6.9E-03<br>F | | RAMY GOES RAMY | 1903<br>2003<br>2006<br>2236 | 1906<br>2010<br>2010<br>2242 | 1926<br>2024<br>2039D<br>2253 | N20<br>S29 | E50<br>E25 | 9505<br>9502 | 06 20.6 | 23<br>21<br>33D<br>17 | SF<br>SF C 5.1<br>SF<br>C 3.4 | 3 | E<br>E | 33<br>88 | F<br>4.8E-03<br>F<br>3.1E-03 | | LEAR<br>GOES<br>GOES<br>GOES<br>GOES | 0307<br>0312<br>0313<br>0520<br>0957<br>1345<br>1724<br>2226 | 0318<br>0315<br>0314<br>0548<br>1009<br>1356<br>1802<br>2231 | 0332<br>0319<br>0325<br>0602<br>1035<br>1415<br>1842<br>2239 | N14 | E38 | 9503<br>9503<br>9504 | 06 20.0<br>06 19.8 | 25<br>7<br>12<br>42<br>38<br>30<br>78<br>13 | SF C 2.2<br>SF<br>SF<br>C 2.1<br>C 2.6<br>C 1.6<br>C 2.0<br>C 2.9 | 3 3 | E<br>E | 17<br>10 | 2.9E-03<br>F<br>4.3E-03<br>5.0E-03<br>2.5E-03<br>7.9E-03<br>1.7E-03 | | GOES<br>LEAR<br>SVTO | 0200<br>0611<br>0614<br>0615E | 0230<br>0201<br>0619<br>0618<br>0618U | 0333<br>0207<br>0641<br>0704<br>0627D | N19<br>N09<br>N09 | E46<br>W15<br>W15 | 9506<br>9506<br>9500<br>9500<br>9500 | 06 21.6<br>06 17.1<br>06 17.1 | 96<br>7<br>30<br>50<br>12D | SF C 1.6<br>SF<br>1F C 2.8<br>1F<br>SF | 3<br>4<br>2 | E<br>E<br>E | 21<br>120<br>37 | 8.2E-03<br>F<br>3.5E-03<br>F | | GOES RAMY HOLL SVTO GOES RAMY | 1120<br>1254<br>1257<br>1257<br>1300<br>1451 | 1125<br>1304<br>1301<br>1305<br>1301<br>1455<br>1455 | 1135<br>1334<br>1314<br>1318<br>1310<br>1457<br>1506 | N17<br>N20<br>N21<br>N19<br>N17 | E37<br>E38<br>E39<br>E19<br>E20 | 9506<br>9506<br>9506<br>9506<br>9503<br>9503 | 06 21.3<br>06 21.4<br>06 21.5 | 15<br>40<br>17<br>21<br>10<br>6 | C 1.8<br>SF C 2.3<br>SF<br>SF<br>SF C 4.2 | 3<br>3<br>3 | E<br>E<br>E | 18<br>31<br>13 | 1.3E-03<br>4.5E-03<br>F<br>FH<br>7.3E-04 | | LSVTO HOLL HOLL HOLL HOLL | 1454<br>1454<br>1516<br>1606<br>1616<br>1705<br>1826 | 1455<br>1455<br>1520<br>1606<br>1634<br>1710<br>1828 | 1514<br>1522D<br>1525<br>1612<br>1644<br>1717<br>1836 | N20<br>N19<br>N19<br>N19<br>N19 | E18<br>E18<br>E18<br>E17 | 9503<br>9503<br>9503<br>9503<br>9503<br>9503<br>9503 | 06 20.1<br>06 20.0<br>06 20.0<br>06 20.0<br>06 20.0<br>06 20.0<br>06 20.0 | 20<br>28D<br>9<br>6<br>28<br>12<br>10 | SF<br>SF<br>SF<br>SF<br>SF<br>SF | 3<br>3<br>3<br>3<br>3<br>3 | E<br>E<br>E<br>E<br>E | 60<br>37<br>11<br>11<br>25<br>15<br>20 | н | | LHOLL<br>HOLL<br>HOLL | 1959<br>2003<br>2006<br>2054<br>2150 | 2021<br>2006<br>2006<br>2055<br>2301 | 2050<br>2052<br>2010<br>2101<br>2324 | N18<br>N19 | E34<br>E16 | 9506<br>9506<br>9503<br>9506 | 06 21.4<br>06 20.0<br>06 21.7 | 51<br>49<br>4<br>7<br>94 | 2N M 2.0<br>2N<br>SF<br>2F<br>C 4.7 | 3<br>3<br>3 | E<br>E<br>E | 362<br>10<br>339 | 4.0E-02<br>UF<br>2.1E-02 | | ⊢GOES : | 1821<br>2310 | 1826<br>1822<br>2326<br>2343U | 1836<br>1829<br>2419<br>2430 | N11<br>S10 | W01<br>W37 | 9504<br>9504<br>9501<br>9501 | 06 19.7<br>06 17.2 | 17<br>8<br>69<br>53D | SF C 2.0<br>SF<br>SF C 4.2<br>SF | 3 | E<br>E | 18<br>42 | 1.6E-03<br>1.2E-02<br>F | | GOES 20 HOLL GOES HOLL GOES | 1901<br>1903 | 1909<br>1905<br>2044<br>2043<br>2248<br>2309 | 1928<br>1914<br>2052<br>2332D<br>2251<br>2324 | N08<br>N08<br>N15 | W17<br>W17<br>W19 | 9504<br>9504<br>9503 | 06 19.5<br>06 19.4 | 27<br>11<br>16<br>171D<br>7<br>33 | SF C 2.3<br>SF<br>1F C 4.4<br>1F<br>C 2.1<br>C 5.7 | 3 | E<br>E | 13<br>118 | 3.0E-03<br>3.3E-03<br>F<br>6.9E-04<br>8.9E-03 | | _GOES | 0112<br>0127 | 0117<br>0135<br>0132<br>0133 | 0123<br>0143<br>0137<br>0137 | N16<br>N06 | E09<br>W15 | 9506<br>9506<br>9504<br>9504 | 06 21.7<br>06 19.9 | 14<br>31<br>10<br>7 | SF C 2.5<br>SF<br>SF C 2.4<br>SF | 3 | E<br>E | 18<br>14 | 1.7E-03<br>F<br>1.3E-03<br>FH | ## $H\alpha$ SOLAR FLARES JUNE | | Start | Max | End | | | NOAA/<br>USAF | CN | 1P | Dur | : | (mp | | O | bs | Time | | sure<br>ent | ment<br>Corr | | |----------------|--------------|--------------|--------------|-----|-----|---------------|----|--------------|----------|----------|-------|----------|-----|--------|------|-----|-------------|--------------|---------------| | Sta Day | | (UT) | (UT) | Lat | CMD | Region | | | (Min) | | Xray | Se | e T | ype | (UT) | | | (Sq Deg) | Remarks | | GOES 21 | | 0303 | 0312 | | | | | | 13 | | C 1.8 | | | | | | | | 1.3E-03 | | -GOES | 0316 | 0319 | 0322 | | | 9504 | | | 6 | | C 1.8 | | | _ | | _ | | | 6.0E-04 | | LEAR | 0318 | 0318 | 0323 | | | 9504 | 06 | 19.5 | 5 | SF | | 3 | | E | | 2 | 25 | | F 07 | | GOES | 0436 | 0446 | 0456 | | | 9504 | 04 | 10 E | 20 | | C 2.5 | 3 | | - | | 1 | 19 | | 2.6E-03 | | LEAR | 0437 | 0440 | 0450<br>0609 | NUY | WZZ | 9504 | UO | 19.5 | 13<br>68 | SF | c 3.1 | | | E | | ' | 19 | | 1.0E-02 | | GOES | 0501<br>0848 | 0537<br>0917 | 0939 | | | | | | 51 | | C 2.5 | | | | | | | | 6.4E-03 | | GOES<br>GOES | 1102 | 1110 | 1122 | | | | | | 20 | | C 3.5 | | | | | | | | 3.5E-03 | | GOES | 1358 | 1401 | 1404 | | | | | | 6 | | C 1.4 | | | | | | | | 4.3E-04 | | -GOES | 1558 | 1602 | 1607 | N13 | W24 | 9503 | | | 9 | SF | C 2.3 | | | | | | | | 1.1E-03 | | RAMY | 1601 | 1601 | 1605 | | | 9503 | 06 | 19.8 | 4 | SF. | | 3 | | E | | 2 | 23 | | | | SVTO | 1601 | 1601 | 1606 | | | 9503 | | 19.8 | 5 | SF | | 3 | | E | | | 32 | | F | | -HOLL | 1601 | 1601 | 1607 | N13 | W24 | 9503 | 06 | 19.8 | 6 | SF | | 3 | | E | | 3 | 88 | | F | | GOES | 2129 | 2135 | 2144 | | | | | | 15 | | C 2.4 | • | | | | | | | 1.9E-03 | | LEAR 22 | | 0501 | 0504 | | | 9504 | | 19.5 | 3 | SF | | 3 | | E | | | 33 | | | | SVTO | 0633 | 0634 | 0640 | | | 9503 | | 19.8 | 7 | SF | | 3 | | Ε | | | 10 | | | | -LEAR | 0852 | 0854 | 0912 | | | 9503 | | 19.3 | 20 | SF | | 3 | | E | | | 30 | | | | -SVTO | 0853 | 0854 | 0902 | | | 9503 | 06 | 19.3 | 9 | SF | - , - | . 3 | | E | | 1 | 18 | | 7 7- 07 | | -GOES | 0921 | 0929 | 0936 | | | 9503 | ٠. | 40.7 | 15 | | C 4.2 | | | _ | | - | - , | | 3.3E-03 | | -SVTO | 0922 | 0925 | 0941 | | | 9503 | 06 | 19.7 | 19 | SF | o / E | . 3 | | E | | > | 54 | | FH<br>5.2E-03 | | GOES | 1422 | 1433 | 1447 | | | 9509 | 04 | 10 4 | 25<br>10 | | C 4.5 | '<br>3 | | E | | 13 | 21 | | 5.2E-03 | | -RAMY | 1425<br>1719 | 1429<br>1728 | 1444<br>1734 | | | 9509<br>9509 | | 19.6<br>19.5 | 19<br>15 | 1F<br>SF | | 3 | | E<br>E | | | 23 | | rn | | -SVTO<br>-ramy | 1719 | 1728 | 1734 | | | 9509 | | 19.6 | 20 | SF | | 3 | | E | | | 38 | | F | | -GOES | 1724 | 1729 | 1734 | | | 9509 | 00 | 17.0 | 10 | | C 2.6 | | | - | | - | ,, | | 1.4E-03 | | -HOLL | 1728E | | 1745 | | | 9509 | 06 | 19.7 | 17D | SF | 0 2.0 | ´ 3 | ; | E | | 4 | 40 | | F | | -HOLL | 1816 | 1829 | 1843 | | | 9511 | | 24.9 | 27 | SN | | 3 | | E | | | 57 | | - | | -RAMY | 1816 | 1830 | 1843D | | | | | 24.9 | 27D | SN | | 3 | | E | | | 31 | | | | -GOES | 1822 | 1828 | 1832 | | | 9511 | | | 10 | | c 6.0 | ) | | | | | | | 2.1E-03 | | -HOLL | 2022 | 2026 | 2052 | N09 | E28 | 9511 | 06 | 24.9 | 30 | SF | | 3 | ; | E | | 3 | 39 | | | | -GOES | 2023 | 2028 | 2034 | | | 9511 | | | 11 | SF | C 5.5 | | | | | | | | 3.1E-03 | | -HOLL | 2114 | 2125 | 2142 | | | 9511 | 06 | 24.9 | 28 | 1N | | _ 3 | ; | E | | 11 | 11 | | | | -GOES | 2117 | 2122 | 2129 | | | 9511 | | | 12 | | M 1.7 | | | | | | | | 9.5E-03 | | -GOES | 2214 | 2222 | 2231 | | | 9503 | | 40.7 | 17 | | M 6.2 | | | _ | | 4.5 | - 4 | | 3.9E-02 | | -HOLL | 2217 | 2218U | | | | 9503 | | 19.4 | 62 | 1N | | 3 | | E | | | 51<br>20 | | F | | HOLL<br>GOES | 2319<br>2357 | 2319<br>2401 | 2323<br>2406 | | | 9511<br>9511 | 06 | 24.9 | 4<br>9 | SF<br>SF | м 1.1 | 3<br>i | ) | E | | - | 20 | | 4.0E-03 | | -LEAR 23 | 0001 | 0014 | 0032 | N09 | E24 | 9511 | 06 | 24.8 | 31 | 1 N | | 3 | ; | E | | 12 | 26 | | FH | | -GOES | 0010 | 0015 | 0020 | | | 9511 | | | 10 | | M 5.6 | 5 | | | | | | | 2.1E-02 | | -GOES | 0207 | 0213 | 0215 | N08 | E24 | 9511 | | | 8 | | C 8.0 | | | | | | | | 2.5E-03 | | -LEAR | 0208 | 0213 | 0217 | N08 | E24 | 9511 | 06 | 24.9 | 9 | SF | | 3 | | Ε | | 2 | 20 | | F | | LEAR | 0302 | 0320 | 0325 | N10 | E23 | 9511 | 06 | 24.8 | 23 | SF | | 3 | ; | E | | 1 | 16 | | F | | LEAR | 0343 | 0345 | 0356 | | | 9511 | | 24.9 | 13 | SF | | 3 | | E | | | 20 | | F | | -LEAR | 0401 | | | | | 9511 | 06 | 24.9 | 58 | 1B | | . 3 | 5 | E | | 24 | 48 | | E | | -GOES | 0402 | | 0411 | | | 9511 | | | 9 | | X 1.2 | | | _ | | | , - | | 2.6E-02 | | SVTO | | 0414U | | | | 9511 | | 24.9 | 45D | SF | | 2 | | E | | | 43 | | F | | LEAR | 0456 | | 0510 | | | 9503 | 06 | 19.0 | 14<br>7 | SF | c 4 3 | , 3 | • | E | | - | 22 | | F<br>2.0E-03 | | -GOES | 0504 | 0509 | 0511 | | | 9511<br>0511 | 04 | 24.9 | | | C 6.2 | <u> </u> | • | _ | | | 22 | | F. 0E-03 | | -SVTO<br>-GOES | 0507<br>0620 | 0508<br>0626 | 0522<br>0634 | | | 9511<br>9511 | 00 | 24.7 | 15<br>14 | SF<br>1N | M 1.3 | | , | E | | • | | | 6.3E-03 | | -LEAR | 0620 | 0626 | 0718 | | | 9511 | 06 | 24.8 | 58 | 1N | 11 1 | 3 | | E | | 10 | 97 | | EF C | | -SVTO | 0623 | 0626 | 0700 | | | 9511 | | 24.8 | 37 | 1F | | 3 | | E | | | 32 | | F. | | -LEAR | 0800 | 0834 | 0921 | | | 9511 | | 24.8 | 81 | 1F | | 3 | | E | | | 00 | | EF. | | SVTO | 0813 | 0814 | 0819 | | | 9511 | | 24.8 | 6 | SF | | 3 | | E | | | 14 | | F | | -SVTO | 0828 | 0834 | 0842 | | | 9511 | | 24.9 | 14 | SF | | 3 | | E | | | 35 | | F | | -GOES | 0830 | 0834 | 0836 | | | 9511 | | | 6 | | C 6.8 | 3 | | | | | | | 1.9E-03 | | LEAR | 0847 | 0850 | 0900 | | | 9503 | 06 | 19.7 | 13 | SF | | 3 | 5 | Ε | | 2 | 26 | | | | -GOES | 1243 | 1304 | 1306 | | | 9511 | | | 23 | | C 4.0 | | | | | | | | 3.9E-03 | | -RAMY | 1247 | 1248 | 1307 | | | 9511 | | 24.9 | 20 | SF | | 3 | | Ε | | | 64 | | F | | -SVTO | 1252 | 1301 | 1313D | | | | | 24.8 | 21D | SF | | 3 | | E | | | 20 | | F | | -RAMY | 1311 | 1315 | 1323 | | | 9511 | | 24.9 | 12 | SF | | 3 | | E | | | 25 | | | | -HOLL | 1313 | 1319 | 1321 | | | 9511 | | 24.8 | 8 | SF | | 3 | | E | | | 10 | | _ | | RAMY | 1326 | 1326 | 1332 | | | 9511 | | 24.9 | 6 | SF | | 3 | | E | | | 10 | | F | | -HOLL | 1340 | 1340 | 1350 | | | 9509 | | 19.5 | 10 | SF | | 3 | | E | | | 18<br>12 | | | | -RAMY | 1340<br>1415 | 1343<br>1417 | 1347<br>1420 | | | 9509 | | 19.5 | 7 | SF | | 3 | , | E | | | 12<br>2/ | | | | HOLL | | 141/ | 14/11 | NTU | E1/ | 9511 | UO | 24.9 | 5 | SF | | | 3 | Ε | | - | 24 | | | ## $H\alpha$ SOLAR FLARES JUNE | Sto Dov | Start | Max<br>(UT) | End<br>(UT) | l at | CMD | NOAA/<br>USAF<br>Region | CM | | Dur<br>(Min) | | mp | Soc | Obs<br>Type | Time | Area Measure<br>Apparent<br>(10-6 Disk) | Corr | Remarks | |--------------------|--------------|--------------|---------------|-------|------|-------------------------|----|--------------|-------------------|----------|-------|--------|-------------|------|-----------------------------------------|----------|--------------------| | Sta Day | | | | | | | | | | | Al dy | | | (01) | | (3q Deg) | | | HOLL 23 | 1425<br>1425 | 1431<br>1433 | 1518<br>1446 | | | 9511<br>9511 | 06 | 24.9 | 53<br>21 | SF | c 7.0 | 3 | E | | 84 | | FH<br>6.8E-03 | | -SVTO | 1428 | 1432 | 1458 | | | 9511 | 06 | 24.8 | 30 | SF | | 3 | E | | 72 | | F | | RAMY | 1428 | 1434 | 1450 | | | 9511 | | 24.9 | 22 | SF | | 3 | Ε | | 46 | | F | | HOLL | 1455 | 1456 | 1458 | S05 | | | | 27.2 | 3 | SF | | 3 | E | | 21 | | F | | HOLL | 1456 | 1456 | 1502 | | | 9503<br>9503 | | 19.7 | 6<br>5 | SF | | 3<br>3 | E<br>E | | 12<br>15 | | E | | ∟SVTO<br>HOLL | 1457<br>1532 | 1459<br>1533 | 1502<br>1538 | | | 9505<br>9505 | | 19.9<br>21.1 | 6 | SF<br>SF | | 3 | E | | 14 | | F | | HOLL | 1639 | 1639 | 1645 | | | 9511 | | 25.1 | 6 | SF | | 3 | Ē | | 22 | | | | <sub>[</sub> —RAMY | 1653 | 1653 | 1659 | | | 9511 | | 24.9 | 6 | SF | | 3 | E | | 14 | | _ | | HOLL | 1653 | 1655 | 1710 | | | 9511 | | 24.8 | 17 | SF | | 3<br>3 | E<br>E | | 26<br>12 | | F<br>F | | └─SVTO<br>┌─RAMY | 1654<br>1658 | 1655<br>1700 | 1702<br>1710 | | | 9511<br>9503 | | 24.8<br>19.8 | 8<br>12 | SF<br>SF | | 3 | E | | 78 | | Г | | HOLL | 1659 | 1700 | 1709 | | | 9503 | | 19.7 | 10 | SF | | 3 | Ē | | 67 | | Н | | -HOLL | 1712 | 1728 | 1748 | | | 9511 | | 24.8 | 36 | SF | | 3 | Ε | | 65 | | | | GOES | 1722 | 1728 | 1738 | | | 9511 | | | 16 | | C 3.6 | | _ | | | | 3.1E-03 | | ⊢RAMY | 1724 | 1726 | 1736 | | | 9511<br>9503 | | 24.9 | 12<br>5 | SF | | 3 | E<br>E | | 29<br>18 | | F | | RAMY<br>GOES | 1801<br>1956 | 1802<br>1959 | 1806<br>2005 | | | 9503<br>9511 | UO | 19.1 | 9 | SF<br>SF | c 2.2 | _ | _ | | 10 | | 1.1E-03 | | HOLL | 1957 | 2001 | 2012 | | | 9511 | 06 | 24.8 | 1Ś | SF | • | 3 | E | | 42 | | | | | | | | | | | | | | | | | | | | | | | GOES 24 | | 0314 | 0317 | | | 9511 | ۰. | <b>25 1</b> | 7 | | C 2.9 | 2 | - | | 31 | | 9.0E-04<br>FH | | └─LEAR<br>GOES | 0313<br>0446 | 0314<br>0455 | 0319<br>0501 | NIU | E 13 | 9511 | UO | 25.1 | 6<br>15 | SF | c 6.1 | | E | | 31 | | 3.6E-03 | | GOES | 0632 | 0635 | 0637 | N10 | E11 | 9511 | | | 5 | | C 3.9 | | | | | | 9.6E-04 | | LEAR | 0634 | 0635 | 0640 | N10 | E11 | 9511 | 06 | 25.1 | 6 | SF | | 3 | Е | | 31 | | | | GOES | 0722 | 0729 | 0735 | | | 9506 | ٠. | 24. | 13 | | c 3.1 | | _ | | 45 | | 2.1E-03 | | LEAR | 0723 | 0724<br>1211 | 0733<br>1216 | | | 9506<br>9507 | | 21.6<br>19.1 | 10<br>5 | SF<br>SF | | 3<br>3 | E<br>E | | 15<br>13 | | | | RAMY<br>GOES | 1211<br>1429 | 1432 | 1434 | N I / | W/I | 7301 | 00 | 17.1 | 5 | 31 | c 2.0 | | L | | 13 | | 5.1E-04 | | ⊢GOES | 1524 | 1532 | 1541 | N13 | W64 | 9503 | | | 17 | SF | C 2.3 | | | | | | 2.1E-03 | | └─HOLL | 1528 | 1528 | 1538 | N13 | W64 | 9503 | 06 | 19.8 | | SF | | 3 | Ε | | 20 | | 2 0= 07 | | GOES | 2237 | 2242 | 2302 | | | | | | 25 | | c 2.2 | | | | | | 2.9E-03 | | _G0ES 25 | 0024 | 0027 | 0030 | N17 | W75 | 9503 | | | 6 | SF | c 3.1 | | | | | | 8.2E-04 | | ∟LEAR | 0026 | 0027 | 0032 | N17 | W75 | 9503 | 06 | 19.3 | 6 | SF | | 3 | Е | | 32 | | 2 55 67 | | GOES | 0103<br>0242 | 0120<br>0250 | 0129<br>0319 | | | | | | 26<br>37 | | C 1.9 | | | | | | 2.5E-03<br>3.3E-03 | | GOES<br>GOES | 0413 | 0418 | 0426 | | | | | | 13 | | C 2.7 | | | | | | 1.9E-03 | | GOES | 0439 | 0441 | 0445 | | | | | | 6 | | C 2.1 | | | | | | 7.3E-04 | | LEAR | 0802 | 0803 | 8080 | | | 9506 | | 21.5 | 6 | SF | | 3 | Ε | | 16 | | | | LEAR | 0816 | 0817 | 0826 | | | 9506 | 06 | 21.3 | | SF | c 1 / | 3 | E | | 14 | | 9.5E-04 | | GOES<br>LEAR | 0853<br>0856 | 0901 | 0905<br>0908D | | W49 | | 06 | 21.7 | 12<br>12D | SF | C 1.6 | 2 | Ε | | 28 | | 9.36-04 | | -GOES | 1214 | 1219 | 1223 | | W54 | | 00 | | 9 | | c 1.9 | | - | | 20 | | 8.6E-04 | | RAMY | 1218 | 1219 | 1225 | s13 | W54 | | 06 | 21.4 | | SF | | 3 | E | | 17 | | | | RAMY | 1230 | 1234 | 1239 | | | 9503 | | 19.4 | | 1F | | 3 | | | 204 | | Н | | HOLL<br>GOES | 1449<br>2306 | 1449<br>2323 | 1453<br>2350 | S15 | W53 | | 06 | 21.6 | 4<br>44 | SF | c 3.5 | 3 | E | | 16 | | 8.0E-03 | | GOES | 2300 | 2323 | 2370 | | | | | | | | | , | | | | | 0.02 03 | | LEAR 26 | | 0442 | 0444 | | | 9503 | 06 | 19.8 | | SF | | 3 | E | | 27 | | 4 25 27 | | GOES | 0525 | 0537 | 0543 | | | 9513<br>0517 | 04 | 20 0 | 18 | | C 1.2 | | _ | | 13 | | 1.2E-03<br>F | | └─LEAR<br>LEAR | 0536<br>0613 | 0539<br>0615 | 0542<br>0618 | | | 9513<br>9503 | | 28.8<br>19.8 | | SF<br>SF | | 3<br>3 | E<br>E | | 35 | | Г | | LEAR | 0905 | 0905 | 0911 | | | 9514 | | 28.0 | | SF | | 3 | | | 17 | | | | ∟svto | 0905 | 0907 | 0911 | N18 | E22 | 9514 | | 28.0 | 6 | SF | | 3 | Ε | | 16 | | H | | GOES | 1059 | 1100 | 1103 | | | 9514 | 07 | 20.0 | 4 | | C 1.2 | | _ | | 22 | | 2.9E-04 | | ∟svto<br>Goes | 1100<br>1150 | 1100<br>1312 | 1105<br>1402 | NIS | E2U | 9514 | υδ | 28.0 | 5<br>1 <b>3</b> 2 | SF | c 7.1 | 3<br>i | E | | 22 | | н<br>4.1E-02 | | -RAMY | 1435 | 1437 | 1446 | N18 | E25 | 9513 | 06 | 28.5 | | SF | 5 7.1 | 3 | E | | 23 | | 32 | | _svt0 | 1436 | 1438 | 1444 | | | 9513 | | 28.6 | | SF | | 3 | | | 23 | | F | | HOLL 27 | 0114 | 0116 | 0125 | s48 | E58 | | 07 | 1.9 | 11 | SF | | 3 | Е | | 19 | | | | GOES | 0151 | 0158 | 0203 | | | | | | 12 | | C 2.1 | | | | | | 1.3E-03 | | SVTO | 0348 | 0350 | 0405 | | | 9512 | 06 | 24.0 | | SF | c 1.5 | . 1 | E | | 32 | | 1.7E-03 | | GOES<br>LEAR | 0348<br>0350 | 0354<br>0351 | 0407<br>0407 | | | 9512<br>9512 | 06 | 24.0 | 19<br>17 | SF | C 1.3 | ,<br>3 | Ε | | 21 | | 1.76-03 | | LEAR | 0709 | 0711 | 0719 | | | 9518 | | 1.5 | | SF | | 3 | | | 13 | | | | | | | | | | | | | | | | | | | | | | ### Ha SOLAR FLARES JUNE 2001 | | | | | | | NOAA/ | | | | | | | <b>-</b> | - | <br>1easure | | | |---------------|---------------|-------------|-------------|-----|-----|----------------|----------|------|--------------|----|------------|-----|-------------|--------------|-------------------|------------------|---------| | Sta Day | Start<br>(UT) | Max<br>(UT) | End<br>(UT) | Lat | CMD | USAF<br>Region | CI<br>Mo | | Dur<br>(Min) | | mp<br>Xray | See | 0bs<br>Type | Time<br>(UT) | oarent<br>5 Disk) | Corr<br>(Sq Deg) | Remarks | | LEAR 27 | 0733 | 0743 | 0804 | s48 | E52 | 9518 | 07 | 1.7 | 31 | SF | | 3 | Е | | 54 | | | | └-G0ES | 0737 | 0743 | 0749 | | | 9518 | | | 12 | | C 1.8 | | | | | | 1.1E-03 | | LEAR | 0823 | 0823 | 0831 | | | 9518 | | 1.9 | 8 | SF | | 3 | E<br>E | | 15 | | | | LEAR | 0846 | 0848 | 0902 | S47 | E49 | 9518 | 07 | 1.5 | 16 | SF | | 3 | E | | 33 | | | | GOES | 1016 | 1034 | 1039 | | | | | | 23 | | C 1.6 | _ | _ | | | | 1.7E-03 | | RAMY | 1250 | 1254 | 1258 | S22 | W45 | 9512 | 06 | 24.1 | 8 | SF | | 3 | Ε | | 10 | | F | | GOES | 2018 | 2021 | 2024 | | | | | | 6 | | C 1.8 | | | | | | 6.0E-04 | | GOES | 2246 | 2250 | 2255 | | | 9512 | | | 9 | | C 2.2 | _ | _ | | | | 1.0E-03 | | ⊢HOLL | 2247 | 2247 | 2303 | | | 9512 | | 24.3 | 16 | SF | | 3 | E | | 81 | | F | | HOLL | 2309 | 2309 | 2316 | | | 9512 | 06 | 24.2 | 7 | SF | - 4 0 | 3 | Ε | | 14 | | 0.05.07 | | GOES | 2356 | 2401 | 2406 | | | 9511 | ۰, | 2/ 0 | 10 | | c 1.8 | 7 | - | | 27 | | 8.0E-04 | | -HOLL | 2359 | | 2411 | N13 | W42 | 9511 | 06 | 24.8 | 12 | SF | | 3 | E | | 27 | | | | LEAR 28 | 0003 | 0004 | 0012 | N12 | W42 | 9511 | 06 | 24.8 | 9 | SF | | 3 | Ε | | 18 | | F | | -GOES | 0314 | 0345 | 0401 | s21 | W52 | 9512 | | | 47 | SF | C 1.5 | | | | | | 2.9E-03 | | L-LEAR | 0331 | 0343 | 0405 | s21 | W52 | 9512 | 06 | 24.1 | 34 | SF | | 3 | Ε | | 57 | | F | | rGOES | 2000 | 2004 | 2014 | | | 9512 | | | 14 | | в 7.7 | | | | | | 5.6E-04 | | L_RAMY | 2003 | 2003 | 2009 | | | 9512 | 06 | 24.0 | 6 | SF | | 3 | Ε | | 16 | | | | _GOES | 2017 | 2022 | 2030 | | | 9511 | | | 13 | | C 1.0 | _ | | | | | 7.0E-04 | | <b>∟RAMY</b> | 2023 | 2024 | 2038 | | | 9511 | 06 | 25.0 | 15 | SF | | 3 | Ε | | 14 | | Н | | -GOES | 2058 | 2106 | 2112 | | | 9511 | | | 14 | | в 8.9 | _ | _ | | | | 6.3E-04 | | <b>└</b> RAMY | 2104 | 2106 | 2110 | N01 | W52 | 9511 | 06 | 25.0 | 6 | SF | | 3 | E | | 16 | | F | | GOES 29 | 0104 | 0110 | 0118 | | | | | | 14 | | C 1.5 | | | | | | 9.4E-04 | | GOES | 0301 | 0305 | 0312 | | | | | | 11 | | в 7.0 | | | | | | 3.9E-04 | | GOES | 0511 | 0521 | 0538 | | | | | | 27 | | C 1.4 | | | | | | 1.7E-03 | | GOES | 0920 | 0932 | 0934 | | | | | | 14 | | C 1.0 | | | | | | 5.9E-04 | | -GOES | 1504 | 1550 | 1719 | S50 | E39 | 9523 | | | 135 | SF | B 9.5 | | | | | | 6.4E-03 | | └─HOLL | 1600 | 1601 | 1603 | s50 | E39 | | 07 | 3.0 | | SF | | 3 | E | | 14 | | | | GOES | 2346 | 2349 | 2353 | | | | | | 7 | | в 7.3 | | | | | | 2.7E-04 | | GOES 30 | 0102 | 0110 | 0112 | | | | | | 10 | | в 5.7 | | | | | | 2.7E-04 | | GOES | 0612 | 0714 | 0731 | | | | | | 79 | | в 8.7 | | | | | | 2.9E-03 | ### "Remarks" - A = Eruptive prominence whose base is less than 90 degrees from central meridian. - B = Probably the end of a more important flare. - C = Invisible 10 minutes before. - D = Brilliant point. - E = Two or more brilliant points. - F = Several eruptive centers. - G = No visible spots in the neighborhood. - H = Flare accompanied by high-speed dark filament. - I = Active region very extended. - ${\sf J}$ = Distinct variations of plage intensity before or after the flare. - K = Several intensity maxima. - L = Existing filaments show signs of sudden activity. - M = White-light flare. - N = Continuous spectrum shows effects of polarization. - O = Observations have been made in the H and K lines of Ca II. - P = Flare shows Helium D3 in emission. - Q = Flare shows Balmer continuum in emission. - R = Marked asymmetry in H-alpha line suggests ejection of high-velocity material. - S = Brightness follows disappearance of filament in same position. - T = Region active all day. - U = Two bright branches, parallel or converging. - V = Occurrence of an explosive phase; important, expansion within roughly 1 minute that often includes a significant intensity increase. - W = Great increase in area after time of maximum intensity. - X = Unusually wide H-alpha line. - Y = System of loop-type prominences. - Z = Major sunspot umbra covered by flare. Observation Type: C=Cinematographic, E=Electronic, P=Photographic, V=Visual NOTE: Beginning July 1997, the times of all GOES X-ray events are now included in this table. # S O L A R R A D I O E M I S S I O N Selected Fixed Frequency Events JUNE | Deri | F 0+ | _ | | Start | Time of<br>Maximum | Duration | Flux Density Peak Mean | 7 4 | Pomonko. | |------|--------------------------|------------|------|------------------|--------------------|-------------|------------------------|-----|------------------------------------| | Day | Freq Sta | | ype | (UT) | (UT) | (Min) | (10 -22 W/m 2 Hz) | Int | Remarks | | 03 | _2695 PALE | | | 2101.0 | 2101.0 | U | 49.0 | | QL=4 ST=2 TYP=3 | | | _2695 SGMF | | | 2101.0 | 2101.0 | U | 48.0 | | QL=4 ST=2 TYP=3 | | | _8800 PALE | | | 2118.0 | 2119.0 | 1.0 | 94.0 | | QL=4 ST=2 TYP=3 | | | ∟8800 SGMF | 4 | S/F | 2118.0 | 2118.0 | 5.0 | 110.0 | | QL=4 ST=2 TYP=3 | | 04 | _2695 LEAR<br>_8800 LEAR | | | 0807.0<br>0807.0 | 0808.0<br>0808.0 | 2.0<br>3.0 | 210.0<br>160.0 | | QL=4 ST=2 TYP=3<br>QL=4 ST=2 TYP=3 | | 05 | _2695 LEAF | 49 | GB | 0444.0 | 0446.0 | 5.0 | 1000.0 | | QL=4 ST=2 TYP=6 | | 05 | -2695 PALE | | | 0444.0 | 0446.0 | 4.0 | 650.0 | | QL=4 ST=2 TYP=6 | | | -8800 SVT | | | 0444.0 | 0445.0 | 4.0 | 260.0 | | QL=4 ST=2 TYP=3 | | | _2695 SVT0 | | | 0444.0 | 0446.0 | 5.0 | 900.0 | | QL=4 ST=2 TYP=6 | | | -8800 LEAF | | | 0445.0 | 0445.0 | 3.0 | 270.0 | | QL=4 ST=2 TYP=3 | | | _8800 PALE | | - | 0445.0 | 0446.0 | 2.0 | 260.0 | | QL=4 ST=2 TYP=3 | | 06 | 8800 PALE | 4 | S/F | 2314.0 | 2314.0 | 5.0 | 75.0 | | QL=4 ST=2 TYP=3 | | 08 | 2695 LEAF | 8 | s | 0223.0 | 0224.0 | 1.0 | 25.0 | | QL=4 ST=2 TYP=3 | | | 8800 LEAF | | | 0227.0 | 0227.0 | U | 22.0 | | QL=4 ST=2 TYP=3 | | 10 | 8800 LEAF | 2 4 | S/F | 0101.0 | 0102.0 | 12.0 | 54.0 | | QL=4 ST=2 TYP=3 | | - | 2695 SGMF | | | 1153.0 | 1154.0 | 1.0 | 24.0 | | QL=4 ST=2 TYP=3 | | | 2695 SVT0 | | | 1154.0 | 1156.0 | 2.0 | 37.0 | | QL=2 ST=2 TYP=3 | | 12 | _2695 LEAF | 8 | s | 0713.0 | 0714.0 | 2.0 | 62.0 | | QL=4 ST=2 TYP=3 | | | ₩8800 SVT0 | 8 ( | S | 0713.0 | 0714.0 | 2.0 | 27.0 | | QL=4 ST=2 TYP=3 | | | └_2695 SVT0 | 8 | S | 0713.0 | 0714.0 | 2.0 | 63.0 | | QL=4 ST=2 TYP=3 | | 13 | 8800 LEAF | ٤ 4 | S/F | 0425.0 | 0431.0 | 14.0 | 180.0 | | QL=4 ST=2 TYP=3 | | | -8800 SVT0 | ) 4 | S/F | 0425.0 | 0431.0 | 11.0 | 150.0 | | QL=4 ST=2 TYP=3 | | | -2695 SVT0 | | | 0427.0 | 0431.0 | 9.0 | 80.0 | | QL=4 ST=2 TYP=3 | | | -2695 LEAF | ₹ 4 | - | 0427.0 | 0431.0 | 10.0 | 85.0 | | QL=4 ST=2 TYP=3 | | | ∟8800 PALE | | | 0431.0 | 0431.0 | 2.0 | 140.0 | | QL=2 ST=2 TYP=3 | | | 2695 LEAF | | | 0827.0 | 0827.0 | U | 22.0 | | QL=4 ST=2 TYP=3 | | | 2695 SVT0 | | | 1134.0 | 1137.0 | 8.0 | 120.0 | | QL=4 ST=2 TYP=3 | | | -8800 SVT0 | | • | 1134.0 | 1139.0 | 8.0 | 430.0 | | QL=4 ST=2 TYP=3 | | | -2695 SGMF | | | 1135.0 | 1137.0 | 15.0 | 110.0 | | QL=4 ST=2 TYP=8 | | | □8800 SGMF | | | 1135.0 | 1139.0<br>1156.0 | 21.0 | 500.0 | | QL=4 ST=2 TYP=6<br>QL=4 ST=2 TYP=3 | | | 8800 SVT0 | | | 1155.0<br>1155.0 | 1204.0 | 8.0<br>10.0 | 310.0<br>110.0 | | QL=4 ST=2 TYP=3 | | | -8800 SGMF | | | 1156.0 | 1156.0 | 20.0 | 380.0 | | QL=4 ST=2 TYP=2 | | | 2695 SGMF | | | 1156.0 | 1204.0 | 20.0 | 100.0 | | QL=4 ST=2 TYP=8 | | | —2695 SGMF | | | 1624.0 | 1627.0 | 8.0 | 51.0 | | QL=4 ST=2 TYP=3 | | | _2695 SVT | | | 1624.0 | 1627.0 | 4.0 | 67.0 | | QL=4 ST=2 TYP=3 | | | 8800 SGM | | | 1955.0 | 1955.0 | U | 41.0 | | QL=4 ST=2 TYP=3 | | 14 | 8800 SVT0 | ) 4 | S/F | 0936.0 | 0938.0 | 3.0 | 43.0 | | QL=4 ST=2 TYP=3 | | | 2695 SGMF | | | 1700.0 | 1700.0 | U | 34.0 | | QL=4 ST=3 TYP=3 | | | <u> 2695</u> SVT0 | 8 0 | S | 1701.0 | 1702.0 | 1.0 | 35.0 | | QL=4 ST=2 TYP=3 | | 15 | _2695 SGM | ₹ 48 | С | 1005.0 | 1011.0 | 18.0 | 130.0 | | QL=4 ST=2 TYP=8 | | | -8800 SVT0 | | | 1005.0 | 1007.0 | 37.0 | 150.0 | | QL=4 ST=2 TYP=8 | | | └-2695 SVT | | | 1005.0 | 1011.0 | 31.0 | 130.0 | | QL=4 ST=2 TYP=8 | | | 8800 SGMI | | | 1006.0 | 1007.0 | 8.0 | 150.0 | | QL=4 ST=2 TYP=3 | | | 2695 SGMI | | | 1034.0 | 1035.0 | 4.0 | 64.0 | | QL=4 ST=2 TYP=3 | | | 2695 SGM | | | 1047.0 | 1049.0 | 33.0 | 260.0 | | QL=4 ST=2 TYP=3 | | | -8800 SGMI | | -, - | 1048.0 | 1049.0 | 32.0 | 100.0 | | QL=4 ST=2 TYP=3 | | | _2695 SVT0 | | | 1537.0 | 1544.0 | 18.0 | 49.0 | | QL=4 ST=2 TYP=2 | | | 12695 SGMI | | | 1539.0 | 1546.0 | 19.0 | 39.0<br>86.0 | | QL=4 ST=2 TYP=2<br>QL=4 ST=2 TYP=8 | | | -8800 PALI<br>-2695 PALI | | | 2216.0<br>2217.0 | 2220.0<br>2217.0 | 6.0<br>1.0 | 86.0<br>33.0 | | QL=4 ST=2 TYP=3 | | | -8800 SGMI | | | 2217.0 | 2220.0 | 9.0 | 72.0 | | QL=4 ST=2 TYP=8 | | | _2695 SGM | | | 2219.0 | 2220.0 | 7.0 | 41.0 | | QL=4 ST=2 TYP=3 | | 16 | 2695 PALI | ≣ 4 | S/F | 2235.0 | 2237.0 | 3.0 | 49.0 | | QL=4 ST=2 TYP=3 | | 17 | 8800 PALI | <b>E</b> 8 | s | 2229.0 | 2229.0 | 1.0 | 77.0 | | QL=4 ST=2 TYP=3 | | 18 | _2695 PALI | <b>.</b> 4 | S/F | 2002.0 | 2003.0 | 5.0 | 72.0 | | QL=4 ST=2 TYP=3 | # S O L A R R A D I O E M I S S I O N Selected Fixed Frequency Events JUNE 2001 | Day | Freq Sta | Ту | pe | Start<br>(UT) | Time of<br>Maximum<br>(UT) | Duration<br>(Min) | Flux Density<br>Peak Mean<br>(10 -22 W/m 2 Hz) | Int | Remarks | |-----|--------------------|----|-----|---------------|----------------------------|-------------------|------------------------------------------------|-----|-----------------| | 18 | -2695 SGMR | 8 | s | 2003.0 | 2004.0 | 1.0 | 46.0 | | QL=4 ST=2 TYP=3 | | | _8800 SGMR | 8 | S | 2003.0 | 2003.0 | U | 34.0 | | QL=4 ST=2 TYP=3 | | | 8800 PALE | 4 | S/F | 2005.0 | 2008.0 | 4.0 | 35.0 | | QL=4 ST=2 TYP=3 | | | _2695 PALE | 4 | S/F | 2020.0 | 2020.0 | 8.0 | 33.0 | | QL=4 ST=2 TYP=3 | | | └-8800 PALE | 8 | S | 2020.0 | 2021.0 | 1.0 | 5.0 | | QL=4 ST=2 TYP=3 | | 22 | 8800 SGMR | 8 | s | 1825.0 | 1825.0 | 2.0 | 39.0 | | QL=4 ST=3 TYP=3 | | | _2695 SGMR | 48 | С | 2215.0 | 2217.0 | 22.0 | 110.0 | | QL=4 ST=2 TYP=8 | | | -2695 PALE | 4 | S/F | 2216.0 | 2217.0 | 4.0 | 120.0 | | QL=4 ST=2 TYP=3 | | | <b>-8800 PALE</b> | 4 | S/F | 2216.0 | 2219.0 | 18.0 | 200.0 | | QL=4 ST=2 TYP=3 | | | 8800 SGMR | 46 | С | 2223.0 | 2224.0 | 14.0 | 28.0 | | QL=4 ST=2 TYP=8 | | 23 | -8800 SVTO | 4 | S/F | 0405.0 | 0407.0 | 4.0 | 110.0 | | QL=4 ST=2 TYP=3 | | | -8800 LEAR | 8 | S | 0407.0 | 0407.0 | 1.0 | 92.0 | | QL=4 ST=2 TYP=3 | | | -8800 PALE | 4 | S/F | 0407.0 | 0407.0 | 5.0 | 74.0 | | QL=4 ST=3 TYP=3 | | | └-2695 SVTO | 8 | S | 0407.0 | 0407.0 | 1.0 | 45.0 | | QL=4 ST=2 TYP=3 | | 24 | <b></b> —2695 LEAR | 8 | s | 0313.0 | 0313.0 | 1.0 | 110.0 | | QL=4 ST=2 TYP=3 | | | -8800 LEAR | 8 | S | 0313.0 | 0313.0 | 1.0 | 230.0 | | QL=4 ST=2 TYP=3 | | | └-2695 PALE | 8 | S | 0313.0 | 0313.0 | 1.0 | 73.0 | | QL=4 ST=2 TYP=3 | | | <b></b> —2695 LEAR | 4 | S/F | 0447.0 | 0449.0 | 6.0 | 23.0 | | QL=4 ST=2 TYP=3 | | | └-8800 LEAR | 4 | S/F | 0447.0 | 0451.0 | 4.0 | 19.0 | | QL=4 ST=2 TYP=3 | Reports are received routinely from the following observatories: LEAR = Learmonth PALE = Palehua SGMR = Sagamore Hill SVTO = San Vito | Explana | tion | of | Type | Code: | |---------|------|----|------|-------| |---------|------|----|------|-------| | Explanation of Type code. | | | | |---------------------------|------------------------|--------------------------|----------------------------| | 1 Simple 1 7 Minor + | 24 Rise | 30 Post Burst Increase A | 43 Onset of Noise Storm | | 2 Simple 1F 8 Spike | 25 Rise A | 31 Post Burst Decrease | 44 Noise Storm in Progress | | 3 Simple 2 20 Simple 3 | 26 Fall | 33 Absorption | 45 Complex | | 4 Simple 2F 21 Simple 3A | 27 Rise and Fall | 40 Fluctuation | 46 Complex F | | 5 Simple 22 Simple 3F | 28 Precusor | 41 Group of Bursts | 47 Great Burst | | 6 Minor 23 Simple 3AF | 29 Post Burst Increase | 42 Series of Bursts | 48 Major | | | | | | | 1A Simple 1A | 4A Simple 2AF | 24PF Post Rise F | 27F Rise and Fall F | | 3A Simple 2A | 40 Rise Only | 16A Fall A | 27AF Rise and Fall AF | | 21A Simple 3A GRF | 40F Rise Only F | 260 Fall Only | 31A Post Burst Decrease A | | 2A Simple 1AF | 4P Post Rise | 26F Fall F | 32A Absorption A | | | | | | RSTN Site Information: Beginning in April 1986, the RSTN sites LEAR, PALE, SGMR, and SVTO fixed frequency solar radio data are periodically adjusted to several world standard stations. These world standard stations include: Kislovodsk, USSR 15,500 MHz; Penticton, Canada 2800 MHz; and Hiraiso, Japan 500 and 200 MHz. # Stanford Mean Solar Magnetic Field (Microtesla) "Sun-As-A-Star" 41 Jun 01 | Day | Jul 00 | Aug | Sep | Oct | Nov | Dec | Jan 01 | Feb | Mar | Apr | May | Jun | |------------|--------|-------------|-----------------|------|---------|-----|------------|---------|-----|----------|------------------|-----| | <u>Day</u> | 87 | 47 | | 16 | 37 | | -8 | -4 | 20 | 1 | -22 | -35 | | 2 | | 38 | | -2 | 11 | 12 | -20 | -7 | | -3 | -16 | -9 | | 3 | | 5 | | 15 | | -15 | -23 | 4 | | -13 | -17 | 16 | | 4 | | 16 | | 29 | 26 | -70 | -8 | 0 | | -22 | -13 | 19 | | 5 | | 14 | 0 | 42 | -13 | -55 | 19 | -6 | | -13 | -6 | -11 | | | | 17 | | 14- | | | | | | | | | | 6 | | | -10 | 40 | -36 | | 24 | -1 | | | -1 | -25 | | 7 | 39 | 16 | -9 | 29 | -60 | | | | -13 | -15 | 9 | -14 | | 8 | 34 | 14 | 12 | 35 | | -5 | | -35 | -7 | -7 | 8 | 25 | | 9 | 53 | -12 | 15 | | -90 | | | | -16 | -7 | 10 | 22 | | 10 | 23 | -18 | 13 | | | | | | -15 | 0 | 2 | -16 | | | | 2. | 40 | | | | | | 7 | | 4 | -36 | | 11 | 6 | -39 | 13 | | -20 | | | | -7 | | -1 | | | 12 | -24 | -15 | 6 | -94 | 26 | | | | -3 | -6 | -9 | -25 | | 13 | -9 | -11 | -46 | -115 | 81 | | | | -7 | -8 | 1 | 8 | | 14 | -33 | 4 | | -35 | 107 | 11 | 7 | -19 | -10 | -7 | 6 | 35 | | 15 | -34 | -11 | -65 | 1 | 101 | -16 | -2 | -15 | -71 | -9 | -13 | 67 | | 16 | | -1 | 26 | 46 | 32 | 6 | -7 | -18 | -7 | -5 | -4 | 70 | | 17 | -29 | 6 | -7 | 77 | -2 | 10 | -14 | | -6 | 0 | 20 | 35 | | 18 | -27 | -15 | 6 | 105 | -17 | 5 | -8 | | -10 | 15 | 68 | 12 | | 19 | -36 | -41 | 36 | 66 | 9 | -8 | -17 | | -1 | | 83 | -1 | | 20 | -45 | -40 | 74 | | 0 | | | | 10 | | 92 | 14 | | | | | | | | | | | | | | | | 21 | -30 | -29 | 38 | -20 | | | | | 28 | 15 | 54 | | | 22 | -26 | 3 | | -23 | -18 | -24 | 2 | | 30 | 31 | 34 | | | 23 | -26 | 21 | 15 | -4 | | | | 23 | 21 | 29 | 28 | | | 24 | -25 | 47 | -8 | -6 | | -46 | | | | 26 | 30 | 9 | | 25 | -5 | 46 | -12 | | 5 | | | <b></b> | | 19 | -12 | -9 | | 26 | 6 | 50 | 18 | | 10 | | 37 | 2 | 23 | 15 | -36 | 2 | | 26<br>27 | 14 | 44 | | | 20 | | 20 | 9 | 15 | 16 | -53 | -62 | | 28 | l . | 44 | | | 30 | | 7 | 12 | 18 | 3 | -50 | | | 26<br>29 | 1 | <del></del> | 72 | 15 | | 17 | 5 | ٠. | 10 | -14 | -38 | 0 | | 30 | l . | | 34 | | 22 | 54 | -20 | | 12 | -24 | -46 | -33 | | 31 | 60 | | J <del>*1</del> | | <b></b> | 2 | -20<br>-11 | | 9 | <u> </u> | - <del>4</del> 0 | 30 | | 31 | UU | | | | | | -11 | | 3 | | | | # STANFORD MEAN SOLAR MAGNETIC FIELD Observations are taken at 2000 UT. Rotation numbers given are the Bartels series, but the dates are not; these dates are five days earlier, to mark times of occurrence of phenomena on the Sun that affect the Earth during the given Bartels Rotation. | 1 8.7E+06 5.0E+06 3.1E+08 1.2E+07 3.5E+06 1.1E+06 1.6E+06 6.2E+05 6.8E+05 3.8E+05 2.9E+06 2.8E+06 2 3.3E+07 9.5E+06 4.3E+07 1.5E+06 3.1E+06 1.0E+06 1.3E+06 2.1E+06 1.3E+07 4.0E+06 2.8E+05 3 1.1E+07 2.7E+07 2.7E+07 4.8E+06 1.0E+07 3.5E+06 1.0E+06 1.3E+06 1.0E+06 1.0E+06 1.0E+06 1.0E+06 1.0E+06 1.0E+07 1.7E+06 1.1E+07 2.2E+07 1.0E+06 8.3E+05 2.4E+06 2.0E+05 3.0E+06 6.3E+05 1.4E+06 5 7.3E+06 9.0E+06 6.2E+06 3.9E+06 3.3E+05 2.9E+06 2.3E+05 1.9E+05 1.0E+06 9.8E+06 3.3E+05 1.4E+06 6 8.3E+06 9.4E+06 6.8E+06 2.5E+06 1.7E+07 1.7E+06 9.5E+06 4.8E+05 2.8E+05 1.8E+05 5.8E+06 2.8E+06 3.0E+05 3.1E+06 1.6E+07 5. | Day | Jul 00 | Aug | Sep | Oct | Nov | Dec | Jan 01 | Feb | Mar | Apr | May | Jun | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|---------|---------|----------|---------|---------|----------|---------|---------|---------|----------|---------| | 3 1.1E+07 2.7E+07 2.7E+07 4.8E+06 1.0E+07 3.5E+06 1.0E+05 3.0E+06 6.4E+06 1.0E+07 1.7E+06 8.1E+05 4 7.7E+06 2.3E+07 2.2E+07 1.6E+06 8.3E+05 2.4E+06 2.0E+06 3.0E+06 1.1E+07 2.2E+07 1.4E+06 5 7.3E+06 9.0E+06 6.2E+06 3.9E+05 3.3E+05 2.3E+06 9.2E+04 3.8E+06 6.3E+05 7.8E+06 2.8E+05 1.4E+06 6 8.3E+06 9.4E+06 1.3E+07 1.5E+06 7.1E+06 3.7E+06 1.9E+05 1.0E+06 9.8E+06 3.3E+05 1.8E+06 3.6E+06 2.4E+06 3.0E+05 5.8E+06 1.6E+07 5.3E+05 8.4E+05 8.4E+05 3.0E+06 1.7E+06 9.4E+06 4.7E+06 3.0E+05 9.4E+06 1.7E+06 3.0E+05 1.1E+06 1.1E+06 1.8E+07 3.6E+05 1.1E+06 3.0E+06 1.2E+06 3.0E+06 1.2E+06 3.0E+06 1.2E+06 3.0E+06 3.0E+06 3.0E+06 | 1 | 8.7E+06 | 5.0E+06 | 3.1E+08 | 1.2E+07 | 3.5E+06 | 1.1E+06 | 1.6E+06 | 6.2E+05 | 6.8E+05 | 3.8E+05 | 2.9E+06 | 2.8E+06 | | 4 7.7E+06 2.3E+07 2.2E+07 1.6E+06 8.3E+05 2.4E+06 2.0E+06 3.0E+06 1.1E+07 2.7E+05 1.4E+06 5 7.3E+06 9.0E+06 6.2E+06 3.9E+05 3.3E+05 2.9E+06 9.2E+04 3.0E+05 1.6E+06 2.8E+05 1.4E+06 6 8.3E+06 9.4E+06 1.3E+07 1.5E+06 7.1E+06 3.7E+06 1.9E+05 1.0E+06 9.8E+06 3.3E+05 1.8E+06 7 9.6E+06 1.2E+07 9.5E+06 4.8E+06 5.8E+06 2.4E+06 3.0E+05 1.4E+07 9.5E+06 4.4E+06 3.0E+05 3.2E+07 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9.2E+06 1.7E+05 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9.2E+07 1.4E+06 9.9E+07 1.6E+05 3.7E+05 3.7E+06 1.8E+07 3.6E+05 1.6E+06 3.7E+06 9.7E+06 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+06 4.4E+07 3.2E+07 | 2 | 3.3E+07 | 9.5E+06 | 4.3E+07 | 1.5E+07 | 3.7E+06 | 3.1E+06 | 1.0E+06 | 1.3E+06 | 2.1E+06 | 1.3E+07 | 4.0E+06 | 2.8E+05 | | 5 7.3E+06 9.0E+06 6.2E+06 3.9E+05 3.3E+05 2.9E+06 9.2E+04 3.8E+05 7.8E+06 2.8E+05 1.4E+06 6 8.3E+06 9.4E+06 1.3E+07 1.5E+06 7.1E+06 3.7E+06 2.3E+05 1.0E+05 1.0E+06 9.8E+06 3.3E+05 1.8E+06 7 9.6E+06 1.2E+07 9.5E+06 4.8E+06 6.8E+06 2.5E+06 1.7E+05 1.3E+05 5.8E+06 1.6E+07 5.3E+05 1.8E+06 8 9.2E+06 2.1E+07 1.1E+07 9.5E+06 5.8E+06 2.4E+06 3.0E+05 2.4E+06 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9 9.1E+06 3.0E+07 1.4E+06 -999 2.8E+07 1.1E+05 3.7E+05 9.1E+06 1.8E+07 3.6E+06 10 3.7E+05 3.1E+07 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+08 4.4E+07 3.2E+07 11 3.7E+05 3.1E+06 2. | 3 | 1.1E+07 | 2.7E+07 | 2.7E+07 | 4.8E+06 | 1.0E+07 | 3.5E+06 | 1.0E+05 | 3.0E+06 | 6.4E+06 | 1.0E+07 | 1.7E+06 | 8.1E+05 | | 8.3E+06 9.4E+06 1.3E+07 1.5E+06 7.1E+06 3.7E+06 2.3E+05 1.0E+06 9.8E+06 3.3E+05 1.8E+06 7 9.6E+06 1.2E+07 9.5E+06 4.8E+06 6.8E+06 2.5E+06 1.7E+05 1.3E+05 5.8E+06 1.6E+07 5.3E+05 8.4E+05 9.2E+06 2.1E+07 1.1E+07 9.5E+06 5.8E+06 2.4E+06 3.0E+05 9.3E+06 9.7E+06 1.7E+07 1.4E+06 9.99 7.6E+06 9.3E+04 3.0E+05 9.7E+06 1.7E+07 1.4E+06 9.99 2.8E+07 1.1E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 1.7E+07 1.7E+06 9.99 2.8E+07 1.1E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+08 4.4E+07 3.2E+07 1.7E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 1.7E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 1.7E+06 2.4E+08 1.1E+08 1.3E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 1.4E+07 9.4E+08 8.9E+07 1.2E+06 3.9E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 1.3E+08 9.5E+06 1.4E+07 9.4E+08 8.9E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.4E+08 8.9E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 3.7E+06 3.0E+08 3.0E+08 5.2E+07 1.8E+07 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.0E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.2E+05 6.8E+07 9.5E+04 1.9E+06 2.0E+07 3.0E+06 4.2E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 6.8E+05 2.2E+06 5.4E+07 9.5E+04 1.9E+06 1.2E+06 3.0E+06 1.1E+07 2.4E+06 2.0E+07 1.0E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.0E+07 1.3E+07 2.2E+07 1.3E+07 2.2E+06 3.0E+06 3.0E+06 6.7E+07 3.7E+06 2.2E+07 1.0E+07 1.0E+06 2.7E+05 3.4E+06 1.1E+06 5.0E+07 1.3E+07 2.2E+07 4.6E+06 2.8E+06 1.1E+06 3.1E+06 3.1E+06 3.1E+06 3.0E+06 1.1E+07 2.4E+06 1.2E+07 1.3E+07 3.4E+06 1.3E+06 3.0E+06 1.1E+06 5.0E+07 1.3E+07 3.4E+06 1.2E+06 3.0E+06 1.1E+06 5.0E+07 1.3E+07 3.4E+06 1.3E+06 3.0E+06 1.1E+06 5.0E+07 3.0E+06 3.0E+ | 4 | 7.7E+06 | 2.3E+07 | 2.2E+07 | 1.6E+06 | 8.3E+05 | 2.4E+06 | 2.0E+05 | 3.0E+06 | 1.1E+07 | 2.2E+07 | 2.7E+05 | 1.4E+06 | | 7 9.6E+06 1.2E+07 9.5E+06 4.8E+06 6.8E+06 2.5E+06 1.7E+05 1.3E+05 5.8E+06 1.6E+07 5.3E+05 8.4E+05 8 9.2E+06 2.1E+07 1.1E+07 9.5E+06 5.8E+06 2.4E+06 3.0E+05 2.4E+05 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9 9.1E+06 3.0E+07 8.6E+06 1.4E+07 -999 7.6E+06 9.3E+05 1.1E+07 7.4E+06 1.8E+07 3.6E+05 10 3.7E+06 9.7E+06 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+07 9.5E+07 3.6E+07 12 7.4E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 14 1.2E+06 5.4E+07 | 5 | 7.3E+06 | 9.0E+06 | 6.2E+06 | 3.9E+05 | 3.3E+05 | 2.9E+06 | 9.2E+04 | 3.8E+06 | 6.3E+05 | 7.8E+06 | 2.8E+05 | 1.4E+06 | | 7 9.6E+06 1.2E+07 9.5E+06 4.8E+06 6.8E+06 2.5E+06 1.7E+05 1.3E+05 5.8E+06 1.6E+07 5.3E+05 8.4E+05 8 9.2E+06 2.1E+07 1.1E+07 9.5E+06 5.8E+06 2.4E+06 3.0E+05 2.4E+05 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9 9.1E+06 3.0E+07 8.6E+06 1.4E+07 -999 7.6E+06 9.3E+05 1.1E+07 7.4E+06 1.8E+07 3.6E+05 10 3.7E+06 9.7E+06 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+07 9.5E+07 3.6E+07 12 7.4E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 14 1.2E+06 5.4E+07 | | | | | | | | | | | | | | | 8 9.2E+06 2.1E+07 1.1E+07 9.5E+06 5.8E+06 2.4E+06 3.0E+05 2.4E+05 9.3E+06 6.2E+06 4.2E+06 1.0E+06 9 9.1E+06 3.0E+07 8.6E+06 1.4E+07 -999 7.6E+06 9.3E+04 3.0E+05 1.1E+07 7.4E+06 1.8E+07 3.6E+05 10 3.7E+06 9.7E+06 1.7E+07 1.4E+06 -999 2.8E+07 1.1E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 11 3.7E+05 3.1E+07 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+07 9.0E+07 3.2E+07 12 7.4E+05 6.3E+06 2.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+07 2.5E+00 1.6E+08 3.1E+06 | | 8.3E+06 | 9.4E+06 | 1.3E+07 | 1.5E+06 | 7.1E+06 | 3.7E+06 | 2.3E+05 | 1.9E+05 | 1.0E+06 | 9.8E+06 | 3.3E+05 | 1.8E+06 | | 9 9.1E+06 3.0E+07 8.6E+06 1.4E+07 -999 7.6E+06 9.3E+04 3.0E+05 1.1E+07 7.4E+06 1.8E+07 3.6E+05 10 3.7E+06 9.7E+06 1.7E+07 1.4E+06 -999 2.8E+07 1.1E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 11 3.7E+05 3.1E+07 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 12.7AE+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 1.0E+06 2.8E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 14 1.2E+06 5.4E+06 9.5E+06 2.1E+07 2.4E+06 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 1.3E+06 1.5E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 11 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.2E+06 3.9E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 1.2E+06 2.2E+07 6.2E+04 4.8E+07 2.0E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 1.2E+06 2.2E+07 3.0E+06 4.2E+07 1.0E+07 1.0E+06 2.2E+05 6.8E+05 2.2E+06 5.4E+07 9.5E+04 1.3E+06 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 1.3E+0 | - | 9.6E+06 | 1.2E+07 | 9.5E+06 | 4.8E+06 | 6.8E+06 | 2.5E+06 | 1.7E+05 | 1.3E+05 | 5.8E+06 | 1.6E+07 | 5.3E+05 | 8.4E+05 | | 10 3.7E+06 9.7E+06 1.7E+07 1.4E+06 -999 2.8E+07 1.1E+05 3.7E+05 1.2E+07 9.5E+07 9.0E+06 6.5E+06 1.3E+06 9.7E+05 3.1E+06 1.3E+06 1.3E+08 4.4E+07 3.2E+07 1.2E+05 3.7E+05 3.1E+06 1.3E+08 4.4E+07 3.2E+07 1.2E+05 6.3E+06 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 1.0E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 1.2E+06 5.4E+06 9.5E+06 2.1E+06 2.4E+08 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 1.5E+07 1.2E+06 5.4E+06 9.5E+06 2.4E+08 1.1E+08 1.3E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.4E+08 8.3E+07 1.9E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+08 2.8E+08 1.5E+08 7.9E+06 1.2E+06 2.2E+07 3.0E+05 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+05 2.2E+06 5.4E+07 9.5E+04 1.2E+06 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+07 2.9E+06 5.2E+07 1.3E+07 2.2E+06 3.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+07 3.9E+06 4.2E+07 3.7E+07 3.4E+06 1.3E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.9E+06 1.7E+06 4.2E+06 1.1E+05 9.1E+06 1.0E+08 2.8E+06 1.3E+07 1.3E+07 3.3E+07 3.3E+07 3.3E+07 3.3E+07 3.3E+07 3.3E+06 2.8E+06 1.1E+06 8.6E+07 8.1E+07 3.3E+06 2.8E+06 1.7E+06 4.2E+06 1.6E+05 1.3E+07 1.3E+07 4.6E+06 2.8E+06 1.3E+07 1.3E+07 4.4E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 2.8E+06 1.5E+06 1.2E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 2.8E+06 1.3E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 2.8E+06 1.3E+06 2.8E+06 1.7E+07 1.5E+07 1.5E+0 | 8 | 9.2E+06 | 2.1E+07 | 1.1E+07 | 9.5E+06 | 5.8E+06 | 2.4E+06 | 3.0E+05 | 2.4E+05 | 9.3E+06 | 6.2E+06 | 4.2E+06 | 1.0E+06 | | 11 3.7E+05 3.1E+07 1.7E+07 1.7E+06 9.4E+06 6.9E+07 1.2E+05 3.7E+05 9.1E+06 1.3E+08 4.4E+07 3.2E+07 12 7.4E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 14 1.2E+06 5.4E+06 9.5E+06 2.1E+06 2.4E+08 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 8.4E+07 2.7E+06 16 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 8.2E+07 1.8E+06 17 1.7E+06 1.1E+06 6.8E+05 9.7E+06 2.9E+08 8.3E | 9 | 9.1E+06 | 3.0E+07 | 8.6E+06 | 1.4E+07 | -999 | 7.6E+06 | 9.3E+04 | 3.0E+05 | 1.1E+07 | 7.4E+06 | 1.8E+07 | 3.6E+05 | | 12 7.4E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 14 1.2E+06 5.4E+06 9.5E+06 2.1E+06 2.4E+08 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 7.8E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 16 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 17 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 18 2.1E+06 2.4E+07 3.0E+06 4.2E+07 1.0E+06 2.7E+05 6.8E | 10 | 3.7E+06 | 9.7E+06 | 1.7E+07 | 1.4E+06 | -999 | 2.8E+07 | 1.1E+05 | 3.7E+05 | 1.2E+07 | 9.5E+07 | 9.0E+06 | 6.5E+06 | | 12 7.4E+05 6.3E+06 5.5E+06 7.1E+06 2.4E+08 8.9E+07 6.1E+05 4.2E+05 4.2E+06 5.6E+06 2.1E+07 2.5E+07 13 1.0E+06 2.8E+06 2.8E+07 6.4E+05 2.4E+08 1.1E+08 1.9E+06 4.7E+05 1.6E+06 3.1E+06 2.8E+07 3.8E+06 14 1.2E+06 5.4E+06 9.5E+06 2.1E+06 2.4E+08 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 7.8E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 16 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 17 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+07 1.8E+07 18 2.1E+06 2.4E+07 3.0E+06 4.2E+07 1.0E+06 2.7E | 11 | 275.05 | 0.45.07 | 4 70.07 | 4 75 .00 | 0.45+06 | 605,07 | 1 25 .05 | 275.05 | 0.45+06 | 4 25,00 | 4 45 107 | 2 25,07 | | 13 | | | | | | | | | | | | | | | 14 1.2E+06 5.4E+06 2.1E+06 2.4E+08 1.1E+08 1.3E+06 1.5E+07 1.1E+06 6.5E+07 5.5E+07 5.0E+06 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 7.8E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 16 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 17 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 18 2.1E+06 2.4E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 4.7E+07 6.5E+05 2.2E+06 5.4E+07 9.5E+04 19 2.6E+06 2.2E+07 3.0E+06 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+06 2.2E+05 5.4E+07 1.3E+07 20 4.3E+06 2.0E+07 3.9E+06 4.2E+07 7.6E+07 2.5E+06 2.1E+06 1.1E | | | | | | | | | | | | | | | 15 5.7E+05 2.5E+06 1.4E+07 9.4E+06 2.4E+08 7.8E+07 1.2E+06 3.9E+07 2.3E+06 2.4E+08 8.4E+07 2.7E+06 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 1.8E+06 2.4E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 4.7E+07 6.5E+05 2.2E+06 5.4E+07 9.5E+04 1.9 2.6E+06 2.2E+07 3.0E+05 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+06 2.2E+05 6.8E+05 3.6E+07 1.3E+05 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 2.9E+06 3.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 2.9E+06 5.1E+07 4.5E+07 2.8E+06 1.1E+06 8.6E+07 8.1E+06 2.8E+06 3.5E+05 2.9E+06 1.7E+06 4.2E+06 1.4E+05 9.1E+06 1.0E+08 2.8E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 1.0E+08 2.8E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 2.8E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 1.0E+08 2.8E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 2.8E+06 1.7E+06 4.1E+06 9.6E+06 1.1E+07 5.4E+07 2.9E+06 1.0E+08 2.9E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+07 1.3E+07 3.3E+06 3.5E+06 3.6E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.9E+06 1.0E+08 2.9E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+07 3.3E+06 3.6E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.9E+06 1.2E+05 7.6E+07 1.3E+07 3.3E+07 3.3E+06 3.6E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.9E+06 1.0E+08 2.9E+06 1.7E+07 6.6E+06 1.0E+08 2.9E+06 1.0E+08 2.9E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.9E+06 1.2E+07 1.5E+07 5.6E+06 2.9E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+06 1.2E+07 5.6E+06 2.9E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+07 5.6E+06 6.0E+05 7.6E+07 5.6E+07 5.6E+06 6.0E+05 7.6E+06 6.0E+05 7.6E+07 5.6E+06 6.0E+05 7.6E+07 5.6E+07 5.6E+06 6.0E+05 7.6E+07 | | | | | | | | | | | | | | | 1.3E+06 9.1E+06 6.8E+05 9.7E+06 2.5E+08 8.3E+07 1.9E+06 5.7E+07 3.7E+06 3.0E+08 5.2E+07 1.8E+07 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 1.8E+06 2.4E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 4.7E+07 6.5E+05 2.2E+06 5.4E+07 9.5E+04 1.9 2.6E+06 2.2E+07 3.0E+05 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+06 2.2E+05 6.8E+05 3.6E+07 1.3E+05 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 2.0E+08 4.3E+06 2.0E+06 3.0E+06 5.0E+07 3.7E+07 3.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 2.5E+06 2.1E+06 1.1E+05 5.9E+05 1.4E+07 2.9E+06 5.1E+07 4.5E+07 2.5E+06 3.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 3.9E+05 1.1E+07 7.2E+07 2.5E+06 1.1E+06 8.6E+07 8.1E+06 2.8E+06 3.5E+05 2.9E+06 1.7E+06 4.2E+06 1.4E+05 9.1E+06 1.0E+08 2.5E+06 1.5E+07 1.3E+07 3.3E+07 3.3E+07 3.3E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 4.1E+06 3.4E+06 9.6E+06 7.5E+06 1.0E+08 2.5E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+07 3.3E+06 5.5E+05 1.8E+06 4.1E+06 3.4E+06 9.6E+06 7.5E+06 1.0E+08 2.5E+06 1.0E+08 2.5E+06 1.2E+05 7.6E+07 1.4E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.5E+06 2.5E+05 1.8E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 2.5E+06 1.2E+07 1.5E+07 5.6E+06 2.5E+06 6.0E+05 7.6E+06 2.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 2.5E+06 2.2E+06 6.0E+05 7.6E+06 1. | | | | | | | | | | | | | | | 17 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 18 2.1E+06 2.4E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 4.7E+07 6.5E+05 2.2E+06 5.4E+07 9.5E+04 19 2.6E+06 2.2E+07 3.0E+05 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+06 2.2E+05 6.8E+05 3.6E+07 1.3E+05 20 4.3E+06 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 21 4.0E+06 1.2E+06 5.0E+07 7.6E+07 2.5E+06 2.1E+06 1.1E+05 5.9E+05 1.4E+07 2.9E+06 5.1E+07 4.5E+07 22 5.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 3.9E+05 1.1E+07 7.2E+07 23 2.8E+06 1.1E+06 8.6E+06 2.8E+06 3.5E+05 3.1E | 13 | 5./E+05 | 2.5E+06 | 1.4E+U/ | 9.4E+06 | 2.4E+08 | 7.8E+U/ | 1.2E+06 | 3.9E+07 | 2.3E+06 | 2.4E+08 | 8.4E+U/ | 2.7E+06 | | 17 1.7E+06 1.1E+07 2.4E+06 2.9E+07 1.6E+08 8.9E+06 3.1E+06 5.6E+07 1.8E+06 2.8E+08 1.5E+08 7.9E+06 18 2.1E+06 2.4E+07 6.2E+04 4.8E+07 2.0E+08 4.3E+06 2.2E+05 4.7E+07 6.5E+05 2.2E+06 5.4E+07 9.5E+04 19 2.6E+06 2.2E+07 3.0E+05 4.2E+07 1.0E+07 1.0E+06 2.7E+05 6.8E+06 2.2E+05 6.8E+05 3.6E+07 1.3E+05 20 4.3E+06 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 21 4.0E+06 1.2E+06 5.0E+07 7.6E+07 2.5E+06 2.1E+06 1.1E+05 5.9E+05 1.4E+07 2.9E+06 5.1E+07 4.5E+07 22 5.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 3.9E+05 1.1E+07 7.2E+07 23 2.8E+06 1.1E+06 8.6E+06 2.8E+06 3.5E+05 3.1E | 16 | 1.3E+06 | 9.1E+06 | 6.8E+05 | 9.7E+06 | 2.5E+08 | 8.3E+07 | 1.9E+06 | 5.7E+07 | 3.7E+06 | 3.0E+08 | 5.2E+07 | 1.8E+07 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 20 4.3E+06 2.0E+07 3.9E+06 4.2E+07 9.4E+06 1.2E+06 4.6E+05 7.7E+05 3.4E+06 1.1E+06 5.2E+07 1.3E+07 21 4.0E+06 1.2E+06 5.0E+07 7.6E+07 2.5E+06 2.1E+06 1.1E+05 5.9E+05 1.4E+07 2.9E+06 5.1E+07 4.5E+07 22 5.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 3.9E+05 1.1E+07 7.2E+07 23 2.8E+06 1.1E+06 8.6E+07 8.1E+06 2.8E+06 3.5E+05 2.9E+06 1.7E+06 4.2E+06 1.4E+05 9.1E+06 1.0E+08 24 1.8E+06 8.9E+04 7.6E+07 1.2E+07 4.6E+06 2.8E+05 6.1E+05 3.1E+06 3.0E+06 1.0E+06 2.9E+06 8.4E+07 25 4.4E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 26 2.9E+06 1.2E+05 7.6E+07 1.4E+07 1.5E | 19 | 2.6F+06 | 2.2E+07 | 3.0E+05 | 4.2E+07 | 1.0E+07 | 1.0E+06 | 2.7E+05 | 6.8E+06 | 2.2E+05 | 6.8E+05 | 3.6E+07 | 1.3E+05 | | 21 | - | | | | | | | | | | | | | | 22 5.0E+06 3.0E+06 6.7E+07 3.7E+07 3.4E+06 1.3E+06 2.0E+05 8.2E+05 3.1E+07 3.9E+05 1.1E+07 7.2E+07 2.8E+06 1.1E+06 8.6E+07 8.1E+06 2.8E+06 3.5E+05 2.9E+06 1.7E+06 4.2E+06 1.4E+05 9.1E+06 1.0E+08 2.8E+06 8.9E+04 7.6E+07 1.2E+07 4.6E+06 2.8E+05 6.1E+05 3.1E+06 3.0E+06 1.0E+06 2.9E+06 8.4E+07 2.5E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 5.5E+05 1.8E+06 4.1E+06 3.4E+06 9.6E+06 7.5E+06 1.0E+08 2.9E+06 1.2E+05 7.6E+07 1.4E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.7E+07 8.6E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 2.5E+06 2.5E+06 1.2E+07 1.5E+07 5.6E+06 2.5E+06 2.5 | | | | | | | | | | | | | | | 23 | 21 | 4.0E+06 | 1.2E+06 | 5.0E+07 | 7.6E+07 | 2.5E+06 | 2.1E+06 | 1.1E+05 | 5.9E+05 | 1.4E+07 | 2.9E+06 | 5.1E+07 | 4.5E+07 | | 24 1.8E+06 8.9E+04 7.6E+07 1.2E+07 4.6E+06 2.8E+05 6.1E+05 3.1E+06 3.0E+06 1.0E+06 2.9E+06 8.4E+07 2.0E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 5.5E+05 1.8E+06 4.1E+06 3.4E+06 9.6E+06 7.5E+06 1.0E+08 2.9E+06 1.2E+05 7.6E+07 1.4E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 2.0E+06 2.0E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 2.0E+06 2.0E+06 1.2E+07 1.5E+07 5.6E+06 2.0E+06 2.0 | 22 | 5.0E+06 | 3.0E+06 | 6.7E+07 | 3.7E+07 | 3.4E+06 | 1.3E+06 | 2.0E+05 | 8.2E+05 | 3.1E+07 | 3.9E+05 | 1.1E+07 | 7.2E+07 | | 25 4.4E+06 1.6E+05 1.3E+07 1.3E+07 3.3E+06 5.5E+05 1.8E+06 4.1E+06 3.4E+06 9.6E+06 7.5E+06 1.0E+08 26 2.9E+06 1.2E+05 7.6E+07 1.4E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 8.6E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 | 23 | 2.8E+06 | 1.1E+06 | 8.6E+07 | 8.1E+06 | 2.8E+06 | 3.5E+05 | 2.9E+06 | 1.7E+06 | 4.2E+06 | 1.4E+05 | 9.1E+06 | 1.0E+08 | | 26 2.9E+06 1.2E+05 7.6E+07 1.4E+07 1.5E+07 2.1E+05 8.6E+06 2.5E+06 1.7E+07 6.6E+06 1.1E+07 5.4E+07 27 8.6E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 | 24 | 1.8E+06 | 8.9E+04 | 7.6E+07 | 1.2E+07 | 4.6E+06 | 2.8E+05 | 6.1E+05 | 3.1E+06 | 3.0E+06 | 1.0E+06 | 2.9E+06 | 8.4E+07 | | 27 8.6E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 | 25 | 4.4E+06 | 1.6E+05 | 1.3E+07 | 1.3E+07 | 3.3E+06 | 5.5E+05 | 1.8E+06 | 4.1E+06 | 3.4E+06 | 9.6E+06 | 7.5E+06 | 1.0E+08 | | 27 8.6E+05 2.2E+05 1.7E+08 1.8E+07 1.7E+07 4.3E+05 8.2E+06 6.0E+05 7.6E+06 1.2E+07 1.5E+07 5.6E+06 | | | | | | ^- | | | | | | 44- 4- | - 4- 0- | | | | | | | | | | | | | | | | | 28 1 QE+A6 3 3E+A5 1 5E+A8 1 6E+A7 7 AE+A6 5 8E+A5 3 AE+A7 0 3E+A6 1 7E+A6 1 5E+A6 1 1E+A7 1 GE+A7 | | 1 | | | | | | | | | | | | | | 28 | | | | | | | | 9.3E+05 | | | | | | 29 1.1E+06 1.8E+07 5.4E+07 6.2E+05 2.2E+06 1.5E+06 4.2E+06 9.4E+05 1.1E+06 4.2E+06 2.4E+07 | | | | | | | | | | | | | | | 30 2.6E+06 1.0E+08 9.0E+06 1.0E+07 1.2E+06 7.5E+05 1.8E+06 5.2E+06 1.8E+06 2.7E+06 5.2E+06 | | | | 9.0E+06 | | 1.2E+06 | | | | | 1.8E+06 | | 5.2E+06 | | 31 3.7E+06 1.2E+08 1.5E+07 9.3E+05 1.4E+06 1.1E+06 4.3E+06 | 31 | 3.7E+06 | 1.2E+08 | | 1.5E+07 | | 9.3E+05 | 1.4E+06 | | 1.1E+06 | | 4.3E+06 | | NOTE: The electron detector responds significantly to protons above 32 MeV; therefore, electron data are contaminated when a proton event is in progress. These days are indicated with '-999' in the table and are not plotted. '--' indicates data not available. NOTE: GOES9 data began April, 1996 and ended on 26 July, 1998. GOES8 is primary satellite as of 27 July, 1998. THIS PAGE LEFT INTENTIONALLY BLANK. # **CONTENTS** Prompt Reports Number 683 Part I # DATA FOR MAY 2001 | | Page | |----------------------------------------------------------------|---------| | SOLAR ACTIVE REGIONS | | | Solar Synoptic Charts | 46- 51 | | Daily Activity Solar Maps | 52- 82 | | YOHKOH Daily Soft X-ray Images | 83- 90 | | Preliminary NSO/KP Coronal Hole Daily Maps | 91- 95 | | Nobeyama Daily Radioheliograph Images at 17 GHz | 96-101 | | Sunspot Groups | 102-126 | | SUDDEN IONOSPHERIC DISTURBANCES | 127-128 | | SOLAR RADIO SPECTRAL OBSERVATIONS | 129-146 | | Solar Radioheliograph - 164 and 327 MHz - Nancay | 147-149 | | COSMIC RAY MEASUREMENTS BY NEUTRON MONITOR | | | Daily Counting Rates | 150 | | Chart of Variations | 151-156 | | Graph and Table of Monthly Mean Moscow Data Jan 1958-May 2001 | 157 | | GEOMAGNETIC INDICES | | | Geomagnetic Activity Indices | 158 | | Daily Average Ap | 159 | | Chart of Kp by 27-day Rotation | 160 | | Table of Monthly aa Index (1950 to present) | 161 | | Chart of 3-hourly Km and aa by 27-day Rotation | 162 | | Provisional Values of Hourly Equatorial Dst | 163 | | Polar Cap (PC) Geomagnetic Index Plot of 15-min values – Thule | 164 | | Plot of 1-min values – Vostok | 165 | | Principal Magnetic Storms | 166 | | Sudden Commencements/Solar Flare Effects | 167 | Mean Field # SOLAR MAGNETIC FIELD SYNOPTIC CHART CARRINGTON ROTATION NUMBER 1975 (9 April to 6 May 2001) WILCOX SOLAR OBSERVATORY SOLAR MAGNETIC FIELD SYNOPTIC CHART SOURCE SURFACE FIELD CARRINGTON ROTATION NUMBER 1975 (9 April to 6 May 2001) SOLAR MAGNETIC FIELD SYNOPTIC CHART CARRINGTON ROTATION NUMBER 1975 (9 April to 6 May 2001) Heliographic Longitude YOHKOH SOFT X-RAY TELESCOPE IMAGES Day 1 Day 3 12:10:51 UT 12:04:54 UT Day 2 10:20:54 UT 84 May 01 YOHKOH SOFT X-RAY TELESCOPE IMAGES May 2001 Day 5 Day 7 07:38:16 UT 12:11:51 UT Day 6 13:17:16 UT YOHKOH SOFT X-RAY TELESCOPE IMAGES Day 9 11:56:53 UT Day 11 11:58:31 UT Day 10 16:38:27 UT 86 May 01 YOHKOH SOFT X-RAY TELESCOPE IMAGES Day 13 Day 15 11:02:32 UT 12:01:08 UT Day 14 11:00:34 UT 87 May 01 YOHKOH SOFT X-RAY TELESCOPE IMAGES Day 17 Day 19 11:55:47 UT 11:55:41 UT Day 18 11:51:47 UT Day 20 11:48:21 UT 88 May 01 Σ. ⊢ YOHKOH SOFT X-RAY TELESCOPE IMAGES May 2001 Day 21 12:41:32 UT Day 23 12:29:06 UT Day 22 12:29:58 UT YOHKOH SOFT X-RAY TELESCOPE IMAGES Day 25 12:26:44 UT Day 27 12:31:13 UT Day 26 12:25:47 UT 90 May 01 YOHKOH SOFT X-RAY TELESCOPE IMAGES May 2001 Day 29 12:25:43 UT Day 31 12:25:54 UT Day 30 12:24:47 UT # KITT PEAK CORONAL HOLE MAPS HE I 1083 nm # KITT PEAK CORONAL HOLE MAPS HE I 1083 nm Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K Contour Levels Tb=[5,8,12,20,50,100] x 10^3 K Grey level Tb <= 9,500 K # S U N S P O T G R O U P S (Ordered by Central Meridian Passage Date) MAY | NOAA/ | Mt | | 0b | serva | ation | | | | | | | | Corrected | | Long. | | |---------------|-----------------|--------------|----|----------|--------------|-----|------------|----------|------------|----------|--------------|---------------|---------------------|---------------|-----------------|--------| | USAF<br>Group | Wilson<br>Group | Sta | Мо | Day | Time<br>(UT) | Lat | CMD | | 1P<br>Day | Max<br>H | Mag<br>Class | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent<br>(Deg) | Qual | | 9442 | | RAMY | 04 | 25 | 1100 | N30 | E80 | 05 | 1.8 | | A | HSX | 30 | 1 | 1 | 3 | | 9442 | 30432 | MWIL | | 25 | 1430 | | E78 | 05 | 1.7 | 4 | AP | | | | | | | 9442 | | VORO | | 25 | 2142 | | E75 | 05 | 1.7 | | | HAX | 55 | 1 | | 2 | | 9442 | | LEAR | | 26 | 0021 | | E70 | 05 | 1.5 | | A | HSX | 60 | 1 | 2 | 3 | | 9442 | | TACH | | 26 | 0505 | | E67 | 05 | 1.5 | | | AXX | 5 | 1<br>1 | 1<br>2 | 4<br>3 | | 9442<br>9442 | | KAND<br>SVTO | | 26<br>26 | 0740<br>0750 | | E70<br>E71 | 05<br>05 | 1.8<br>1.8 | | | HS<br>HRX | 30 | 1 | 1 | 2 | | 9442 | | RAMY | | 26 | 1235 | | E65 | 05 | 1.6 | | A<br>A | HSX | 30 | i | i | 4 | | 9442 | | HOLL | | 26 | 1450 | | E64 | 05 | 1.6 | | Â | HSX | 50<br>50 | i | ż | 3 | | 9442 | 30432 | MWIL | | 26 | 1500 | | E67 | 05 | 1.9 | 4 | (AP) | | 20 | | _ | - | | 9442 | | VORO | | 26 | 2146 | N28 | E62 | 05 | 1.7 | | , , | HAX | 76 | 1 | | 2 | | 9442 | | LEAR | 04 | 27 | 0015 | N30 | E57 | 05 | 1.5 | | Α | HSX | 100 | 1 | 1 | 2 | | 9442 | | TACH | | 27 | 0551 | | E56 | 05 | 1.6 | | | HSX | 50 | 1 | 2 | 4 | | 9442 | | SVTO | | 27 | 0630 | | E57 | 05 | 1.7 | | Α | HAX | 60 | 1 | 1 | 2 | | 9442 | | KAND | | 27 | 0700 | | E54 | 05 | 1.5 | | _ | HS | 40 | 1 | 1 | 5 | | 9442 | 70/70 | RAMY | | 27 | 1206 | | E53 | 05 | 1.6 | - | A | HSX | 40 | 1 | 2 | 3 | | 9442<br>9442 | 30432 | MWIL | | 27<br>27 | 1500<br>1514 | | E51<br>E52 | 05<br>05 | 1.6<br>1.7 | 5 | (AP)<br>A | HSX | 60 | 1 | 1 | 3 | | 9442 | | HOLL<br>VORO | | 27 | 2147 | | E49 | 05 | 1.7 | | A | HAX | 66 | i | ' | 2 | | 9442 | | LEAR | | 28 | 0010 | | E47 | 05 | 1.7 | | Α | HSX | 70 | i | 1 | 3 | | 9442 | | SVTO | | 28 | 0510 | | E45 | 05 | 1.7 | | Ä | HAX | 200 | 1 | 1 | 2 | | 9442 | | TACH | | 28 | 0531 | | E45 | 05 | 1.7 | | | HSX | 50 | 1 | 1 | 4 | | 9442 | | KAND | | 28 | 0605 | N29 | E45 | 05 | 1.8 | | | HS | | 1 | 2 | 4 | | 9442 | | RAMY | | 28 | 1208 | | E41 | 05 | 1.7 | | Α | HSX | 60 | 1 | 2 | 2 | | 9442 | | HOLL | | 28 | 1450 | | E39 | 05 | 1.6 | _ | A | HAX | 90 | 1 | 2 | 3 | | 9442 | 30432 | MWIL | | 28 | 1500 | | E39 | 05 | 1.7 | 5 | (AP) | | .7 | 4 | | 2 | | 9442 | | VORO | | 28<br>29 | 2144<br>0008 | | E36<br>E33 | 05<br>05 | 1.7 | | | HAX | 67<br>60 | 1<br>1 | 1 | 2<br>4 | | 9442<br>9442 | | LEAR<br>TACH | | 29 | 0422 | | E32 | 05 | 1.6<br>1.7 | | Α | HAX<br>AXX | 20 | i | i | 1 | | 9442 | | SVTO | | 29 | 0528 | | E32 | 05 | 1.7 | | Α | HSX | 50 | i | i | ż | | 9442 | | KAND | | 29 | 0910 | | E29 | 05 | 1.6 | | | HS | | 2 | 1 | 5 | | 9442 | | RAMY | | 29 | 1210 | | E29 | 05 | 1.8 | | Α | HSX | 60 | 1 | 1 | 3 | | 9442 | | HOLL | 04 | 29 | 1438 | | E27 | 05 | 1.7 | | Α | HSX | 50 | 1 | 2 | 3 | | 9442 | | VORO | | 29 | 2124 | | E23 | 05 | 1.7 | | | HAX | 112 | 1 | | 2 | | 9442 | | LEAR | | 30 | 0003 | | E21 | 05 | 1.6 | | Α | HSX | 50 | 1 | 1 | 4 | | 9442 | | SVTO | | 30 | 0523 | | E18 | 05 | 1.6 | | A | HSX | 60 | 1 | 2 | 3 | | 9442 | | TACH | | 30 | 0537 | | E19 | 05 | 1.7 | | | HSX | 110 | 1<br>1 | 1 | 3 | | 9442<br>9442 | | KAND<br>HOLL | | 30<br>30 | 0710<br>1310 | | E18<br>E16 | 05<br>05 | 1.7<br>1.8 | | Α | HS<br>HSX | 40 | 1 | 2<br>2 | 3 | | 9442 | 30432 | MWIL | | 30 | 1445 | | E13 | 05 | 1.6 | 5 | (AP) | | 40 | • | _ | , | | 9442 | J043E | LEAR | | 01 | 0020 | | E07 | 05 | 1.6 | _ | A | HSX | 40 | 1 | 1 | 2 | | 9442 | | SVTO | | 01 | 0700 | | E04 | 05 | 1.6 | | В | CSO | 80 | 4 | 6 | 2<br>3 | | 9442 | | KAND | | 01 | 0730 | | E05 | 05 | 1.7 | | | HA | | 1 | 2 | 4 | | 9442 | | RAMY | 05 | 01 | 1140 | N28 | E02 | 05 | 1.6 | | Α | HSX | 40 | 1 | 1 | 3 | | 9442 | | HOLL | | 01 | 1420 | | W01 | 05 | 1.5 | | В | CSO | 60 | 4 | 5 | 3 | | 9442 | 30432 | MWIL | | 01 | 1430 | | W00 | 05 | 1.6 | 5 | (BF) | | | _ | _ | _ | | 9442 | | LEAR | | 02 | 0007 | | W05 | 05 | 1.6 | | Α | HSX | 60 | 1 | 1 | 3 | | 9442 | | VORO | | 02 | 0115 | | W05 | 05 | 1.7 | | | HAX | 84 | 1 | 4 | 2 | | 9442<br>9442 | | TACH<br>SVTO | | 02<br>02 | 0415<br>0504 | | W07 | 05<br>05 | 1.6 | | | HSX<br>HSX | 70<br>70 | 1<br>1 | 1<br>1 | 3<br>2 | | 9442<br>9442 | | KAND | | 02 | 0740 | | W07 | 05 | 1.6<br>1.8 | | A | HS | 70 | i | 2 | 2 | | 9442 | | RAMY | | 02 | 1220 | | W11 | 05 | 1.6 | | Α | HSX | 20 | i | 1 | 4 | | 9442 | | HOLL | | 02 | 1408 | | W12 | 05 | 1.6 | | A | HSX | 60 | 1 | 2 | 3 | | 9442 | 30432 | MWIL | | 02 | 1430 | | W12 | 05 | 1.7 | 4 | (AP) | | | | | | | 9442 | | LEAR | | 03 | 0010 | | W18 | 05 | 1.6 | | Α | HAX | 50 | 1 | 1 | 4 | | 9442 | | VORO | | 03 | 0020 | N27 | W16 | 05 | 1.8 | | | HAX | 62 | 1 | | 2 | | 9442 | | KAND | | 03 | 0700 | | W21 | 05 | 1.6 | | | HS | | 1 | 1 | 3 | | 9442 | | SVTO | | 03 | 0825 | | W22 | 05 | 1.6 | | Α | HRX | 40 | 1 | 2 | 2 | | 9442 | | TACH | | 03 | 0959 | | W22 | 05 | 1.7 | | | HSX | 203 | 1 | 1 | 3 | | 9442 | 70/72 | HOLL | | 03 | 1430 | | W24 | 05<br>05 | 1.7 | , | A<br>(AD) | HSX | 40 | 1 | 2 | 2 | | 9442<br>9442 | 30432 | MWIL<br>RAMY | | 03<br>03 | 1430<br>1550 | | W24 | 05<br>05 | 1.7<br>1.8 | 4 | (AP) | HSX | 50 | 1 | 1 | 1 | | 9442 | | LEAR | | 04 | 0015 | | W24 | 05 | 1.8 | | A<br>A | HSX | 50 | 1 | i | 4 | | 9442 | | SVTO | | 04 | 0529 | | W32 | 05 | 1.7 | | Â | HSX | 30 | i | i | 3 | | 9442 | | KAND | | 04 | 0705 | | W32 | 05 | 1.8 | | • | HS | | i | ż | 3 | | 9442 | | RAMY | | 04 | 1218 | | W34 | 05 | 1.8 | | Α | HSX | 30 | i | 2 | 2 | | 9442 | 30432 | MWIL | | 04 | 1430 | | W37 | 05 | 1.7 | | (AP) | | | | | | | | | HOLL | | 04 | 1700 | N27 | W39 | 05 | 1.7 | | Α | HSX | 30 | 1 | 1 | 2 | | 9442<br>9442 | | | | 05 | | | W42 | | 1.8 | | | HSX | 40 | 1 | 1 | 1 | ### SUNSPOT GROUPS (Ordered by Central Meridian Passage Date) MAY 2001 | | NOAA/ | Mt | | 0bserva | | | | | | | | Corrected | | Long. | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|------|---------|--------------|---------|----|-----|----------|--------------|---------------|---------------------|---------------|-----------------|------| | 9442 SAND 05 05 0820 827 446 05 1.8 | USAF<br>Group | Wilson<br>Group | Sta | | Time<br>(UT) | Lat CMD | | | Max<br>H | Mag<br>Class | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent<br>(Deg) | Qual | | 9442 SAND 05 05 0820 R27 W46 05 1.8 | 9442 | | TACH | 05 05 | 0540 | N27 W46 | 05 | 1.6 | | | HSX | 45 | 1 | 1 | 4 | | 9442 30432 MILL 05 05 1218 M27 W5 05 2.0 A A BSX 30 1 1 2 9 9442 NOLL 05 05 1440 M26 W5 05 1.8 A BSX 20 1 1 1 3 3 9442 NOLL 05 05 1440 M26 W5 05 1.8 A BSX 20 1 1 1 3 3 9442 NOLL 05 05 1440 M26 W5 05 1.8 A BSX 20 1 1 1 3 3 9442 NOLL 05 05 1440 M26 W5 05 1.8 A BSX 20 1 1 1 1 3 9442 NOLL 05 05 1440 M26 W5 05 1.8 A BSX 20 1 1 1 1 3 9447 NOLL 04 29 1500 M15 E32 05 2.0 A BSX 20 1 1 2 2 3 9447 NOLL 04 29 1500 M15 E32 05 2.0 B CR0 10 3 2 2 4 9447 NOLL 04 29 1500 M15 E33 05 2.1 4 B CR0 10 3 3 2 4 9447 NOLL 04 29 1500 M15 E33 05 2.1 4 CR 20 1 1 1 1 3 9447 NOLL 04 04 05 05 05 1440 M15 E32 05 2.0 B CR0 10 3 3 2 4 9447 NOLL 04 04 05 05 10 110 M15 E32 05 2.0 B CR0 10 3 3 2 3 9447 NOLL 04 05 05 10 110 M15 E32 05 2.0 B CR0 10 3 3 2 3 9447 NOLL 04 05 05 05 1440 M15 E32 05 2.1 B CR0 10 3 3 3 3 9447 NOLL 04 05 05 10 110 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOLL 04 05 05 10 110 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOR 04 M1L 05 01 110 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOR 04 M1L 05 01 140 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOR 05 05 05 01 1450 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.2 A A MXX 3 1 1 1 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.1 B SK0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 0 10 2 2 2 3 3 9447 NOR 05 05 07 0007 M15 E32 05 2.0 B SK0 0 10 1 1 1 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | 0820 | N27 W46 | 05 | 1.8 | | | HR | | | 1 | 3 | | 9442 MOLL 05 05 1420 MOLL 05 05 1400 MOLL 05 05 1.8 MOLL 05 05 1400 MOLL 05 05 1.8 | 9442 | | SVTO | 05 05 | 1025 | N27 W46 | 05 | 1.8 | | Α | HSX | 20 | 2 | | | | 9442 NOLL 05 05 1440 NOLL 05 05 1480 NOLL | 9442 | | RAMY | 05 05 | 1218 | N27 W45 | 05 | 2.0 | | | HSX | 30 | 1 | 1 | 2 | | 9442 VORD 05 06 0121 N27 N54 05 1.8 HAX 29 1 2 4 9442 30432 MILL 05 06 1430 N27 M61 05 1.8 A KX 10 1 1 4 9442 HOLL 05 06 1440 N26 M55 05 1.6 A HSX 50 1 1 3 9447 HOLL 05 06 1440 N26 M55 05 1.6 A HSX 50 1 1 3 9447 SURPA HOLL 05 06 1440 N26 M55 05 1.6 A HSX 50 1 1 3 9447 SURPA HOLL 05 05 05 100 N13 E33 05 2.1 A (B ) C (B ) 9447 SURPA HOLL 05 05 05 10 N13 E33 05 2.1 A (B ) C (B ) 9447 SURPA HOLL 05 05 003 N13 E33 05 2.1 A (B ) 9447 SURPA HOLL 05 05 003 N13 E28 M5 2.1 B KX KX M10 M1 | | 30432 | MWIL | | | | | | 5 | (AP) | | | | | | | 9442 30432 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 MILL 05 06 1430 NZP W61 05 1.8 4 AXX 9447 VORO 06 29 1138 N11 E32 05 2.1 4 BX 9447 VORO 06 29 2124 N12 E30 05 2.1 4 BX 9447 NZP W61 04 30 0323 N13 E33 05 2.1 4 BX 9447 NZP W61 04 30 0323 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0323 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0323 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0323 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0324 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0324 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0324 N13 E34 05 2.0 BX 9447 NZP W61 04 30 0324 N13 E34 05 2.0 BX 9447 NZP W61 04 04 04 04 04 04 04 04 04 04 04 04 04 | | | HOLL | | | | | | | Α | | | | 1 | 3 | | 9442 MOLL 05 06 1440 N25 W65 05 1.6 AB N25 W61 05 05 1.6 AB N5X S0 | | | | | | | | | | | | | | _ | | | 9447 HOLL 05 06 1440 N26 W65 05 1.6 A HSX 50 1 1 3 3 9447 30440 MuIL 04 29 1438 N11 E32 05 2.0 A AXX 10 2 2 3 3 9447 VOR0 04 29 2124 N12 E30 05 2.1 4 (B ) | | | | | | | | | | | AXX | 10 | 1 | 1 | 4 | | 9447 HOLL 0 2 2 1338 N11 E32 OS 2.0 | | 30432 | | | | | | | 4 | | | | | _ | _ | | 9447 VORD 04 Q 2124 M12 E30 05 2.1 B ROR 0 10 3 2 4 4 8 9 9 9 9 9 9 9 9 9 | 9442 | | HOLL | 05 06 | 1440 | N26 W65 | 05 | 1.6 | | A | HSX | 50 | 1 | 1 | 3 | | 9447 | | 70//0 | | | | | | | , | | AXX | 10 | 2 | 2 | 3 | | 9447 LEAR 04 30 0030 NI2 E28 05 2.1 B CR0 10 3 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | 30440 | | | | | | | 4 | (R ) | DV0 | 77 | 7 | 4 | 2 | | 9447 SUTO 04 30 0523 M13 E24 05 2.0 B CRO 10 3 3 3 3 9447 TACH 04 30 0537 M13 E28 05 2.3 AXX | | | | | | | | | | | | | | | 7 | | 9447 TACH 04 30 430 537 N13 E28 05 2.3 AXX 3 1 1 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | | | | | | | | 4 7 | | 9447 30440 Mult 0 430 1310 M12 E22 05 2.2 | | | | | | | | | | В | | | | | 3 | | 9447 30440 MILL 04 30 1445 M12 E07 05 2.0 8 BKO 10 2 2 3 9447 8040 MILL 05 01 1420 M13 E07 05 2.0 8 BKO 10 2 2 3 9447 30440 MILL 05 01 1420 M13 E07 05 2.0 8 BKO 10 2 2 3 9447 30440 MILL 05 01 1430 M12 E07 05 02 2.0 8 BKO 10 2 2 3 9447 4 4 4 4 4 4 4 4 4 | | | | | | | | | | | | 3 | | | | | 9447 RAMY 05 01 1140 N12 E07 05 2.0 B BX0 10 2 2 3 9447 SOURCE SOURC | | 70//0 | | | | | | | , | | AXX | | ' | ı | 3 | | 9447 Moll 05 01 1420 N12 E00 05 2.0 B BX0 10 4 3 9 9447 Moll 05 01 1430 N12 E05 05 2.0 B BX1 36 4 4 2 9447 VOR0 05 02 015 N12 B01 05 2.0 B BX1 36 4 4 2 9447 TACH 05 02 0415 N12 B01 05 2.0 B BX1 36 4 4 2 9447 TACH 05 02 0415 N12 B01 05 2.0 B BX1 36 4 4 2 9447 SVITO 05 02 0504 N12 B01 05 1.9 B BA0 060 6 5 5 9447 KAND 05 02 0740 N12 W04 05 1.9 B BA0 060 10 6 2 9447 RANY 05 02 1420 N12 W04 05 1.9 B BA0 060 14 7 4 9447 SVITO 05 02 1430 N13 W30 95 1.9 B BA0 080 22 7 3 9447 VOR0 05 03 0020 N12 W14 05 1.9 B BA0 090 21 B A 9447 VOR0 05 03 0020 N12 W14 05 1.9 B BA0 090 21 B A 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 21 B A 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 5 7 2 9447 SVITO 05 03 0825 N11 W19 05 1.9 B BA0 090 103 11 12 2 9447 SVITO 05 03 0825 N12 W21 05 1.8 B BA0 090 103 11 12 2 9447 SVITO 05 04 0829 N12 W21 05 1.9 B BA0 090 103 11 12 2 9447 SVITO 05 04 0829 N12 W21 05 1.9 B BA0 090 103 11 12 2 9447 SVITO 05 04 0829 N12 W21 05 1.9 B BA0 090 103 13 13 13 13 13 13 | | 30440 | | | | | | | 4 | | DDO | 10 | 2 | 2 | 7 | | 9447 SUTO 50 01 1430 NIZ 1205 OS 2.0 4 (BF) 9447 LEAR 05 02 2007 NIZ 1200 OS 2.0 B DRO 20 B A 3 9447 TACH 05 02 2007 NIZ 1200 OS 2.0 B DRO 20 B A 3 9447 TACH 05 02 0207 NIZ 1200 OS 2.0 B DRO 40 B B A 4 4 2 9447 TACH 05 02 0204 NIZ 1204 OS 1.9 B DAO 60 6 6 5 2 9447 KAND 05 02 1220 NIZ 1204 OS 2.0 B DAO 60 6 6 5 2 9447 KAND 05 02 1220 NIZ 1207 OS 2.0 B DAO 60 OS 2.0 OS 2.0 B DAO 60 OS 2.0 | | | | | | | | | | | | | | | | | 9447 | | 70//0 | | | | | | | | | DAU | 10 | 4 | 3 | 3 | | 9447 TACH 05 02 0415 N12 W04 05 1.9 BRO 488 5 3 3 9447 KAND 05 02 0740 N12 W04 05 1.9 B DAO 60 6 5 2 9447 KAND 05 02 1220 N12 W07 05 2.0 B DAO 60 10 6 2 9447 ANY 05 02 1220 N12 W07 05 2.0 B DAO 80 22 7 3 9447 SAVIO 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N13 W10 05 1.8 DAO DAO 101 7 11 2 9447 TACH 05 03 0959 N13 W21 05 1.9 B EAO 100 17 11 2 9447 TACH 05 03 1430 N11 W19 05 1.9 B EAO 100 17 11 2 9447 RAMP 05 03 1550 N12 W21 05 1.9 B EAO 70 24 11 2 9447 RAMP 05 03 1550 N12 W21 05 1.9 B EAO 70 24 11 2 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 150 19 10 1 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 370 11 12 2 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 370 34 11 4 4 9447 SVTO 05 04 0529 N13 W31 05 1.7 EAI 37 13 3 9447 SVTO 05 04 0529 N13 W31 05 1.7 EAI 37 13 3 9447 SVTO 05 05 05 05 00 N13 W30 05 1.8 B EAO 380 32 13 2 9447 SVTO 05 05 05 0540 N13 W37 05 1.5 B EAO 370 11 12 2 9447 SVTO 05 05 05 0540 N13 W37 05 1.5 B EAO 370 38 30 32 13 2 9447 SVTO 05 05 050 07 N13 W30 05 1.6 B EAO 30 30 30 30 30 30 30 3 | | 30440 | | | | | | | 4 | | DDO | 20 | Ω | | 7 | | 9447 TACH 05 02 0415 N12 W04 05 1.9 BRO 488 5 3 3 9447 KAND 05 02 0740 N12 W04 05 1.9 B DAO 60 6 5 2 9447 KAND 05 02 1220 N12 W07 05 2.0 B DAO 60 10 6 2 9447 ANY 05 02 1220 N12 W07 05 2.0 B DAO 80 22 7 3 9447 SAVIO 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N12 W15 05 1.9 B DAO 90 21 8 4 9447 VORO 05 03 0020 N13 W10 05 1.8 DAO DAO 101 7 11 2 9447 TACH 05 03 0959 N13 W21 05 1.9 B EAO 100 17 11 2 9447 TACH 05 03 1430 N11 W19 05 1.9 B EAO 100 17 11 2 9447 RAMP 05 03 1550 N12 W21 05 1.9 B EAO 70 24 11 2 9447 RAMP 05 03 1550 N12 W21 05 1.9 B EAO 70 24 11 2 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 150 19 10 1 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 370 11 12 2 9447 SVTO 05 04 0529 N12 W32 05 1.9 B EAO 370 34 11 4 4 9447 SVTO 05 04 0529 N13 W31 05 1.7 EAI 37 13 3 9447 SVTO 05 04 0529 N13 W31 05 1.7 EAI 37 13 3 9447 SVTO 05 05 05 05 00 N13 W30 05 1.8 B EAO 380 32 13 2 9447 SVTO 05 05 05 0540 N13 W37 05 1.5 B EAO 370 11 12 2 9447 SVTO 05 05 05 0540 N13 W37 05 1.5 B EAO 370 38 30 32 13 2 9447 SVTO 05 05 050 07 N13 W30 05 1.6 B EAO 30 30 30 30 30 30 30 3 | | | | | | | | | | ь | | | | | 2 | | 9447 30440 MIL 05 02 1430 N13 W09 05 2.0 B DAO 80 22 7 3 3 9447 30440 MIL 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 V0R0 05 03 0010 N12 W14 05 1.9 B DAO 90 21 8 4 9447 V0R0 05 03 0020 N13 W20 05 1.8 DSI 22 10 3 9447 SVT0 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 70 24 11 7 2 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 7 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 3 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 1 1 2 9447 LEAR 05 04 0015 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 1430 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 04 0529 N12 W32 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 04 075 N12 W32 05 1.8 B EAO 70 24 11 2 2 9447 N10 05 04 0529 N12 W32 05 1.8 B EAO 70 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | 7 | | 9447 30440 MIL 05 02 1430 N13 W09 05 2.0 B DAO 80 22 7 3 3 9447 30440 MIL 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 V0R0 05 03 0010 N12 W14 05 1.9 B DAO 90 21 8 4 9447 V0R0 05 03 0020 N13 W20 05 1.8 DSI 22 10 3 9447 SVT0 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 70 24 11 7 2 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 7 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 3 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 1 1 2 9447 LEAR 05 04 0015 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 1430 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 04 0529 N12 W32 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 04 075 N12 W32 05 1.8 B EAO 70 24 11 2 2 9447 N10 05 04 0529 N12 W32 05 1.8 B EAO 70 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | D | | | | | 2 | | 9447 30440 MIL 05 02 1430 N13 W09 05 2.0 B DAO 80 22 7 3 3 9447 30440 MIL 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 V0R0 05 03 0010 N12 W14 05 1.9 B DAO 90 21 8 4 9447 V0R0 05 03 0020 N13 W20 05 1.8 DSI 22 10 3 9447 SVT0 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 70 24 11 7 2 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 7 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 3 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 1 1 2 9447 LEAR 05 04 0015 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 1430 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 04 0529 N12 W32 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 04 075 N12 W32 05 1.8 B EAO 70 24 11 2 2 9447 N10 05 04 0529 N12 W32 05 1.8 B EAO 70 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | ь | | 00 | | | 2 | | 9447 30440 MIL 05 02 1430 N13 W09 05 2.0 B DAO 80 22 7 3 3 9447 30440 MIL 05 02 1430 N13 W09 05 1.9 4 (B ) 9447 V0R0 05 03 0010 N12 W14 05 1.9 B DAO 90 21 8 4 9447 V0R0 05 03 0020 N13 W20 05 1.8 DSI 22 10 3 9447 SVT0 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 N10 05 03 0825 N11 W19 05 1.9 B EAO 70 24 11 7 2 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 7 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 3 9447 N10 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 0825 N12 W21 05 1.8 CAIL 400 11 7 7 1 1 2 9447 LEAR 05 04 0015 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 03 1430 N12 W22 05 1.9 B EAO 70 24 11 2 9447 SVT0 05 04 0529 N12 W32 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 04 075 N12 W32 05 1.8 B EAO 70 24 11 2 2 9447 N10 05 04 0529 N12 W32 05 1.8 B EAO 70 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | D | | 60 | | | 4 | | 9447 | | | | | | | | | | | | | | | | | 9447 | | 30//0 | | | | | | | 4 | | טאט | 00 | | ı | , | | 9447 VAND 05 03 03 0020 N12 W14 05 1.9 DSO 103 55 7 2 2 9447 XAND 05 03 0700 N13 W20 05 1.8 DSI 22 10 3 9447 SVT0 05 03 0825 N11 W19 05 1.9 B EAO 100 17 11 2 9447 TACH 05 03 0430 N12 W22 05 1.9 B EAO 100 11 7 11 2 9447 SVT0 05 03 0825 N11 W19 05 1.8 CAI 400 11 7 3 9447 RANY 05 05 1.8 SVT0 05 03 0825 N13 W21 05 1.8 CAI 400 11 7 3 9447 SVT0 05 04 0529 N12 W22 05 1.9 B EAO 150 150 19 10 1 9447 SVT0 05 04 0529 N12 W22 05 1.9 B EAO 150 150 19 10 1 9447 SVT0 05 04 0529 N12 W22 05 1.9 B EAO 150 150 19 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 30440 | | | | | | | 7 | | DAO | <b>o</b> n | 21 | 8 | 4 | | 9447 SVTO 05 03 0825 N11 N19 05 1.9 B EAO 100 17 11 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | | | | | | | | | | 9447 SVTO 05 03 0825 N11 N19 05 1.9 B EAO 100 17 11 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | | | | | | | | | | | 103 | | | 3 | | 9447 HOLL 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 03 1550 N12 W21 05 2.1 B DAO 150 19 10 1 9447 SVT0 05 04 0529 N12 W32 05 1.9 B EAI 200 34 11 4 9447 RAMY 05 04 0705 N12 W32 05 1.8 BG EAI 180 22 13 3 9447 RAMY 05 04 1705 N12 W34 05 1.7 EAI 37 13 3 9447 RAMY 05 04 1700 N11 W39 05 1.8 BG EAI 180 22 13 3 9447 HOLL 05 04 1430 N13 W38 05 1.7 EAI 37 13 2 9447 TACH 05 05 05 0540 N13 W42 05 1.8 BEAO 370 11 12 2 9447 TACH 05 05 05 0540 N13 W39 05 1.8 B EAO 380 32 13 2 9447 TACH 05 05 05 0540 N13 W39 05 1.8 BEAO 1240 18 10 1 9447 SVT0 05 05 1025 N13 W37 05 1.7 DAI 383 9 13 4 9447 RAMY 05 05 1218 N13 W39 05 1.6 EAO 18 EAO 18 10 1 9447 SVT0 05 05 1025 N13 W47 05 1.7 DAI 383 9 13 4 9447 RAMD 05 05 0520 N13 W49 05 1.6 EAO 18 EAO 18 14 3 9447 SVT0 05 05 1218 N12 W38 05 1.9 B EAI 260 16 13 2 9447 RAMY 05 05 1218 N12 W38 05 1.9 B EAO 270 5 12 2 9447 BOAD 05 05 0520 N13 W49 05 1.6 EAO 18 EAO 18 14 3 9447 SVT0 05 05 1025 N13 W47 05 1.9 B EAI 260 16 13 2 9447 HOLL 05 06 1430 N13 W39 05 1.6 BG EAO 270 5 12 2 9447 BOAD MILL 05 05 1440 N11 W35 05 1.7 S (D ) 9447 BOAD MILL 05 05 1440 N11 W35 05 1.7 S (D ) 9447 VORD 05 06 0121 N12 W36 05 1.3 BA DAY 125 5 9 4 9447 VORD 05 06 0121 N12 W36 05 1.5 B EAO 200 6 14 3 9 9447 SVT0 05 07 0011 N13 W73 05 1.5 B EAO 200 6 14 3 9 9447 SVT0 05 07 0011 N13 W73 05 1.5 B EAO 200 6 14 3 9 9447 SVT0 05 07 0548 N11 W55 05 1.5 B EAO 200 6 14 3 9 9447 SVT0 05 07 0548 N11 W75 05 1.6 BEAO 200 6 14 3 9 9447 SVT0 05 07 0548 N11 W75 05 1.6 BEAO 200 6 14 3 9 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 49 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 6 14 4 8 3 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 6 14 4 8 3 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 6 14 3 3 12 4 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 6 14 3 3 12 4 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 20 2 2 11 3 9447 SVT0 05 07 1545 N13 W80 05 1.5 B EAO 200 20 2 2 2 3 9447A BOAD 10 140 S11 E15 05 2.7 A EAC 10 B EAO 200 2 2 2 3 9447A BOAD 10 140 S11 E15 05 2.7 A | | | | | | | | | | R | | 100 | | | 2 | | 9447 30440 MWIL 05 03 1430 N11 W23 05 1.9 B EAO 70 24 11 2 9447 RAMY 05 03 1430 N12 W22 05 1.9 4 (BP) 9447 RAMY 05 03 1550 N12 W21 05 2.1 B DAO 150 19 10 1 9447 LEAR 05 04 0015 N13 W28 05 1.9 BG EAI 200 34 11 4 9447 SVTO 05 04 0529 N12 W32 05 1.8 BG EAI 200 34 11 4 9447 RAMY 05 03 1430 N12 W27 05 1.8 BG EAI 180 22 13 3 9447 KAND 05 04 1218 N13 W35 05 1.9 B ESO 370 11 12 2 9447 BAY 05 04 1218 N13 W35 05 1.7 EAI 37 13 3 9447 HOLL 05 04 1700 N11 W39 05 1.8 B EAO 380 32 13 2 9447 LEAR 05 05 0120 N13 W42 05 1.7 DAI 383 05 1.7 DAI 383 05 1.7 DAI 3847 05 1.7 DAI 383 | | | | | | | | | | _ | | | | | 3 | | 9447 80440 MUIL 05 03 1430 N12 W22 05 1.9 4 (BP) 9447 RAMY 05 03 1550 N12 W21 05 2.1 B DAO 150 19 10 1 9447 SUTO 05 04 0529 N12 W32 05 1.8 BG EAI 200 34 11 4 9447 RAMY 05 04 0705 N12 W34 05 1.7 EAI 180 22 13 3 9447 RAMY 05 04 1700 N11 W39 05 1.7 EAI 180 22 13 3 9447 RAMY 05 04 1700 N11 W39 05 1.8 BESO 370 11 12 2 9447 HOLL 05 04 1700 N11 W39 05 1.8 BESO 370 11 12 2 9447 LEAR 05 05 05 0120 N13 W32 05 1.8 BESO 370 11 12 2 9447 LEAR 05 05 05 0120 N13 W32 05 1.8 BESO 370 11 12 2 9447 LEAR 05 05 05 0120 N13 W32 05 1.9 BG DAI 240 18 10 1 9447 RAMY 05 04 W1 W1 W39 05 1.8 BESO 370 11 12 2 9447 RAMY 05 05 05 05 05 05 05 05 05 05 05 05 05 | | | | | | | | | | В | | | | | 2 | | 9447 RAMY 05 03 1550 N12 W21 05 2.1 B DAO 150 19 10 1 1 9 447 SVTO 05 04 0529 N12 W32 05 1.8 BG EAI 180 22 13 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | 30440 | | | | | | | 4 | | | | | | | | 9447 SVTO 05 04 0529 N12 W32 05 1.9 BG EAI 200 34 11 49 49 447 SVTO 05 04 0529 N12 W32 05 1.8 BG EAI 180 22 13 3 9 447 RAND 05 04 0705 N12 W34 05 1.7 EAI 37 13 3 9 447 RAND 05 04 1218 N13 W35 05 1.9 B ESO 370 11 12 2 9 447 30440 MWIL 05 04 1700 N11 W39 05 1.8 B EAO 380 32 13 2 9 447 LEAR 05 05 05 0120 N13 W42 05 1.7 DAI 383 9 13 4 9 447 SVTO 05 05 05 0120 N13 W42 05 1.7 DAI 383 9 13 4 9 447 SVTO 05 05 05 0120 N13 W47 05 1.7 DAI 383 9 13 4 9 447 SVTO 05 05 05 0125 N13 W47 05 1.9 B EAO 380 32 13 2 2 3 9 447 SVTO 05 05 05 0125 N13 W47 05 1.9 B EAO 18 EAO 18 14 3 9 447 SVTO 05 05 05 0125 N13 W47 05 1.9 B EAO 18 EAO 16 13 2 2 9 447 HOLL 05 04 N13 W42 05 1.9 B EAO 18 EAO 16 13 2 2 9 447 SVTO 05 05 05 05 0125 N13 W47 05 1.9 B EAO 270 5 12 2 9 447 HOLL 05 05 05 05 05 05 05 05 05 05 05 05 05 | | | | | | | | | | | DAO | 150 | 19 | 10 | 1 | | 9447 KAND 05 04 0529 N12 W32 05 1.8 BG EAI 180 22 13 3 9447 KAND 05 04 0705 N12 W34 05 1.7 EAI 37 13 3 9447 RAMY 05 04 1218 N13 W35 05 1.9 B ESO 370 11 12 2 9447 30440 MWIL 05 04 1430 N13 W35 05 1.9 B ESO 370 11 12 2 9447 HOLL 05 04 1700 N11 W39 05 1.8 B EAO 380 32 13 2 9447 LEAR 05 05 05 120 N13 W42 05 1.9 BG DAI 240 18 10 1 9447 TACH 05 05 0820 N13 W49 05 1.6 EAO 18 14 14 3 9447 SVTO 05 05 1025 N13 W47 05 1.7 DAI 383 9 13 4 9447 SVTO 05 05 1218 N13 W35 05 1.9 B EAI 260 16 13 2 9447 RAMY 05 05 1430 N13 W39 05 1.8 B EAI 260 16 13 2 9447 HOLL 05 05 1430 N13 W39 05 1.7 5 (D ) 9447 HOLL 05 05 1430 N13 W39 05 1.7 5 (D ) 9447 HOLL 05 05 1440 N11 W53 05 1.5 CD ) 9447 HOLL 05 05 1440 N11 W53 05 1.3 HAX 175 3 2 9447 TACH 05 06 0639 N12 W61 05 1.7 CD ) 9447 HOLL 05 06 1430 N13 W66 05 1.6 BG EAI 250 24 14 3 9447 HOLL 05 06 1430 N13 W66 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W69 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W68 05 1.5 BE EAO 200 6 14 39 N13 W79 05 1.7 BE EAO 30 N13 W69 05 1.5 EA | | | | | | | 05 | | | BG | EAI | 200 | 34 | 11 | 4 | | 9447 30440 MUIL 05 04 1218 N13 W35 05 1.9 B ESO 370 11 12 2 9447 30440 MUIL 05 04 1700 N11 W39 05 1.8 B EAO 380 32 13 2 9447 LEAR 05 05 0120 N13 W42 05 1.9 BG DAI 240 18 10 1 9447 TACH 05 05 0540 N13 W47 05 1.7 DAI 383 9 13 4 9447 KAND 05 05 0820 N13 W47 05 1.7 DAI 383 9 13 4 9447 SVT0 05 05 1025 N13 W47 05 1.6 EAO 18 14 3 9447 RAMY 05 05 1218 N12 W48 05 1.9 B EAO 270 5 12 9447 RAMY 05 05 1218 N12 W48 05 1.9 B EAO 270 5 12 9447 VORO 05 05 06 0121 N12 W63 05 1.3 HAX 175 3 2 9447 VORO 05 06 0121 N12 W63 05 1.3 HAX 175 3 2 9447 TACH 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 A 30440 MWIL 05 06 1430 N13 W66 05 1.6 B EAO 200 6 14 3 9447 VORO 05 06 1430 N13 W66 05 1.6 S (BP) 9447 HOLL 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 06 1430 N13 W66 05 1.6 S (BP) 9447 SVT0 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 SVT0 05 07 1320 N13 W60 05 1.6 B ESO 210 2 11 2 9447 SVT0 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 40 3 12 4 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1320 N13 W80 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1550 N12 W79 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1550 N12 W79 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.7 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.7 B EAO 80 2 2 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B EAO 80 2 2 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B EAO 80 2 2 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B EAO 10 2 2 3 | | | SVTO | 05 04 | 0529 | | 05 | | | BG | EAI | 180 | 22 | 13 | 3 | | 9447 | | | | | | | 05 | | | | EAI | | 37 | 13 | | | 9447 30440 Muil 05 04 1430 N13 W38 05 1.7 5 (BG) 9447 Holl 05 04 1700 N11 W39 05 1.8 B EAO 380 32 13 2 9447 LEAR 05 05 050 N13 W42 05 1.9 BG DAI 240 18 10 1 9447 TACH 05 05 0540 N13 W47 05 1.7 DAI 383 9 13 4 9447 KAND 05 05 0820 N13 W47 05 1.9 B EAO EAO 18 14 3 9447 SVTO 05 05 1025 N13 W47 05 1.9 B EAO EAO 16 13 2 9447 RAMY 05 05 1218 N12 W48 05 1.9 B ESO 270 5 12 2 9447 AND MIL 05 05 1430 N13 W52 05 1.7 5 (D ) 9447 HOLL 05 05 1440 N11 W53 05 1.6 BG EAI 250 24 14 3 9447 VORO 05 06 0121 N12 W63 05 1.3 HAX 175 3 2 9447 TACH 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 AND MIL 05 05 1440 N13 W66 05 1.5 B EAO 200 6 14 3 9447 TACH 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 06 0121 N13 W60 05 1.5 B EAO 200 6 14 3 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 SVTO 05 07 0548 N11 W75 05 1.6 B EAO 140 3 12 4 9447 SVTO 05 07 0500 N12 W76 05 1.6 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 01 1420 S11 E28 05 2.7 B CRO 10 3 2 3 9447A AND MWIL 05 01 1420 S11 E16 05 2.7 B CRO 10 3 2 3 9447A AND MWIL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A BOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A BOLL 05 01 1430 S11 E15 05 2.7 A AXX 10 2 2 3 | | | | | | | 05 | | | В | | 370 | 11 | 12 | | | 9447 | | 30440 | | | | | 05 | | 5 | | | | | | | | 9447 TACH 05 05 050 0120 N13 W42 05 1.9 BG DAI 240 18 10 1 9447 TACH 05 05 0540 N13 W47 05 1.7 DAI 383 9 13 4 9447 KAND 05 05 0820 N13 W49 05 1.6 EAO 18 14 3 9447 SVTO 05 05 1025 N13 W47 05 1.9 B EAI 260 16 13 2 9447 RAMY 05 05 1218 N12 W48 05 1.9 B EAI 260 16 13 2 9447 RAMY 05 05 1430 N13 W52 05 1.7 5 (D ) 9447 HOLL 05 05 1440 N11 W53 05 1.6 BG EAI 250 24 14 3 9447 VORO 05 06 0121 N12 W63 05 1.3 HAX 175 3 2 9447 TACH 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 HOLL 05 06 1430 N13 W66 05 1.6 BG EAI 250 24 14 3 9447 VORO 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 HOLL 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 07 0011 N13 W73 05 1.5 B EAO 210 2 11 2 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W73 05 1.5 CAO 210 2 11 2 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 10 2 11 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 10 2 11 3 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.5 B EAO 80 2 2 11 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 2 3 9447A BOULL 05 01 1420 S12 E15 05 2.7 B CRO 2 2 2 3 9447A BOULL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 | | | | | | | 05 | | | | EAO | 380 | 32 | 13 | 2 | | 9447 | | | | | | | | | | | | 240 | 18 | 10 | | | 9447 | | | | | | | 05 | | | | DAI | 383 | 9 | 13 | 4 | | 9447 | | | | | | | | | | | | | 18 | 14 | 3 | | 9447 | | | | 05 05 | 1025 | N13 W47 | 05 | 1.9 | | В | EAI | 260 | 16 | 13 | 2 | | 9447 30440 MWIL 05 05 1430 N13 W52 05 1.7 5 (D ) 9447 HOLL 05 05 1440 N11 W53 05 1.6 BG EAI 250 24 14 3 9447 VORO 05 06 0121 N12 W63 05 1.3 HAX 175 3 2 9447 TACH 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 30440 MWIL 05 06 1430 N13 W66 05 1.6 5 (BP) 9447 VORO 05 06 0440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0900 N12 W76 05 1.6 B ESO 210 2 11 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W76 05 1.6 CSO 3 10 3 9447 HOLL 05 07 1545 N13 W80 05 1.5 B EAO 80 2 11 4 9447 RAMY 05 07 1545 N13 W80 05 1.6 GSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 GSO 70 3 8 3 9447 A SVTO 05 01 1440 S11 E16 05 2.7 B CRO 2 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 | 9447 | | | 05 05 | | N12 W48 | 05 | | | В | ES0 | 270 | 5 | 12 | 2 | | 9447 | 9447 | 30440 | MWIL | 05 05 | 1430 | N13 W52 | 05 | | 5 | (D) | | | | | | | 9447 30440 MWIL 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 30440 MWIL 05 06 1430 N13 W66 05 1.6 5 (BP) 9447 HOLL 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 SVTO 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 (BF) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 A AXXX 10 2 2 3 | | | HOLL | 05 05 | 1440 | N11 W53 | 05 | 1.6 | | BG | EAI | 250 | 24 | 14 | 3 | | 9447 30440 MWIL 05 06 0639 N12 W61 05 1.7 CAI 125 5 9 4 9447 30440 MWIL 05 06 1430 N13 W66 05 1.6 5 (BP) 9447 HOLL 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 SVTO 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 A AXXX 10 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 A AXXX 10 2 2 3 | 9447 | | VORO | 05 06 | 0121 | N12 W63 | 05 | 1.3 | | | HAX | 175 | 3 | | 2 | | 9447 30440 MWIL 05 06 1430 N13 W66 05 1.6 5 (BP) 9447 HOLL 05 06 1440 N11 W68 05 1.5 B EAO 200 6 14 3 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 04 30 1445 S11 E28 05 2.7 B CSO 70 3 8 3 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A RAMY 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 A AXXX 10 2 2 3 | 9447 | | TACH | 05 06 | | N12 W61 | 05 | | | | CAI | 125 | 5 | 9 | 4 | | 9447 VORO 05 07 0011 N13 W73 05 1.5 CAO 210 2 11 2 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | 30440 | MWIL | 05 06 | 1430 | N13 W66 | 05 | | 5 | (BP) | | | | | | | 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | HOLL | 05 06 | 1440 | N11 W68 | 05 | 1.5 | | В | EAO | 200 | 6 | 14 | 3 | | 9447 LEAR 05 07 0101 N13 W71 05 1.7 B EAO 140 3 12 4 9447 SVTO 05 07 0548 N11 W75 05 1.6 B ESO 210 2 11 3 9447 KAND 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | VORO | 05 07 | 0011 | N13 W73 | 05 | 1.5 | | | CAO | 210 | 2 | 11 | 2 | | 9447 RAMY 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | LEAR | 05 07 | 0101 | N13 W71 | 05 | | | В | EAO | 140 | 3 | 12 | | | 9447 RAMY 05 07 0900 N12 W76 05 1.6 CSO 3 10 3 9447 RAMY 05 07 1320 N13 W80 05 1.5 B EAO 80 2 11 4 9447 HOLL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | | | | 05 07 | 0548 | N11 W75 | 05 | | | В | ES0 | 210 | 2 | 11 | 3 | | 9447 30440 MWIL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | KAND | | 0900 | N12 W76 | 05 | | | | CSO | | | | 3 | | 9447 30440 MWIL 05 07 1450 N12 W79 05 1.7 B CSO 70 3 8 3 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | RAMY | 05 07 | 1320 | N13 W80 | 05 | 1.5 | | В | EAO | | | | | | 9447 30440 MWIL 05 07 1545 N13 W80 05 1.6 4 (B) 9447A 30441 MWIL 04 30 1445 S11 E28 05 2.7 3 (BF) 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | | HOLL | 05 07 | 1450 | N12 W79 | 05 | | | В | CSO | 70 | 3 | 8 | 3 | | 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447 | 30440 | MWIL | 05 07 | 1545 | N13 W80 | 05 | 1.6 | 4 | (B) | | | | | | | 9447A SVTO 05 01 0700 S11 E21 05 2.9 B CRO 10 3 2 3 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | 9447A | 30441 | MWIL | 04 30 | 1445 | S11 E28 | 05 | 2.7 | 3 | (BF) | | | | | | | 9447A RAMY 05 01 1140 S11 E16 05 2.7 B CRO 2 2 3 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | | | | | | | | | | | | . 10 | 3 | 2 | 3 | | 9447A HOLL 05 01 1420 S12 E15 05 2.7 A AXX 10 2 2 3 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | | | | | | | | | | | | | | | | | 9447A 30441 MWIL 05 01 1430 S11 E15 05 2.7 4 (B) | | | | | | | | | | | | 10 | | | | | 9444 30436 MWIL 04 27 1500 S10 E80 05 3.6 4 AF | | | | | | | | | 4 | | | | | | | | | 9444 | 30436 | MWIL | 04 27 | 1500 | S10 E80 | 05 | 3.6 | 4 | AF | | | | | | # S U N S P O T G R O U P S (Ordered by Central Meridian Passage Date) MAY | NOAA/<br>Usaf | Mt<br>Wilson | | 0bs | serva | ation<br>Time | | | CM | IP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|-----|----------|---------------|-----|------------|----------|------------|-----|-----------|------------|-------------------|--------|-----------------|--------| | Group | Group | Sta | Мо | Day | (UT) | Lat | CMD | | Day | Н | - | | (10-6 Hemi) | | (Deg) | Qual | | 9444 | | KAND | | 28 | 0605 | s09 | E72 | 05 | 3.6 | | | AX | | 1 | 1 | 4 | | 9444 | | RAMY | | 28 | 1208 | | E75 | 05 | 4.1 | | Α | HSX | 60 | 1 | 1 | 2 | | 9444 | | HOLL | | 28 | 1450 | | E71 | 05 | 3.9 | | Α . | AXX | 60 | 4 | 2 | 3 | | 9444 | 30436 | MWIL | | 28 | 1500 | | E71 | 05 | 3.9 | 4 | (B) | | 70 | , | - | , | | 9444 | | LEAR | | 29 | 8000 | | E65 | 05 | 3.9 | | В | DSO | 70 | 6 | 5 | 4 | | 9444 | | SVTO | | 29 | 0528 | | E62 | 05 | 3.9 | | В | CRO | 40 | 6<br>3 | 5<br>6 | 2<br>5 | | 9444<br>9444 | | KAND<br>Ramy | | 29<br>29 | 0910<br>1210 | | E60<br>E58 | 05<br>05 | 3.9<br>3.9 | | В | CAO<br>CSO | 30 | 3 | 4 | 3 | | 9444 | | HOLL | | 29 | 1438 | | E57 | 05 | 3.9 | | В | CAO | 50 | 7 | 7 | 3 | | 9444 | 30436 | MWIL | | 29 | 1500 | | E55 | 05 | 3.7 | 4 | (B) | CAU | 50 | ' | | , | | 9444 | 30430 | VORO | | 29 | 2124 | | E51 | 05 | 3.7 | • | (5) | HAX | 31 | 1 | | 2 | | 9444 | | LEAR | | 30 | 0003 | | E51 | 05 | 3.8 | | В | CRO | 20 | 5 | 5 | 4 | | 9444 | | SVTO | | 30 | 0523 | | E48 | 05 | 3.8 | | В | CSO | 30 | 3 | 4 | 3 | | 9444 | | TACH | | 30 | 0537 | | E47 | 05 | 3.8 | | | HSX | 40 | 1 | 1 | 3 | | 9444 | | KAND | 04 | 30 | 0710 | | E46 | 05 | 3.7 | | | HS | | 1 | 1 | 2 | | 9444 | | HOLL | | 30 | 1310 | | E42 | 05 | 3.7 | | В | BXO | 10 | 2 | 5 | 3 | | 9444 | 30436 | MWIL | | 30 | 1445 | | E43 | 05 | 3.8 | 4 | (B) | | | | | | | 9444 | | LEAR | | 01 | 0020 | | E36 | 05 | 3.7 | | В | BXO | 30 | 4 | 4 | 2 | | 9444 | | SVTO | | 01 | 0700 | | E35 | 05 | 3.9 | | В | CSO | 40 | 6 | 6 | 3 | | 9444 | | KAND | | 01 | 0730 | | E32 | 05 | 3.7 | | | CSO | | 3 | 5 | 4 | | 9444 | | RAMY | | 01 | 1140 | | E28 | 05 | 3.6 | | A | HSX | 10 | 1 | 1_ | 3 | | 9444 | 70/7/ | HOLL | | 01 | 1420 | | E29 | 05 | 3.8 | | В | вхо | 10 | 3 | 5 | 3 | | 9444 | 30436 | MWIL | | 01 | 1430 | | E30 | 05 | 3.8 | 4 | (BF) | **** | | _ | | , | | 9444 | | RAMY | | 02 | 1220 | | E19 | 05 | 3.9 | | A | AXX | 40 | 2 | 1 | 4<br>3 | | 9444<br>9444 | 30436 | HOLL | | 02<br>02 | 1408<br>1430 | | E17<br>E17 | 05<br>05 | 3.9<br>3.9 | 4 | A<br>(AF) | AXX | 10 | 3 | 1 | 3 | | 9444 | 30436 | MWIL<br>LEAR | | 03 | 0010 | | E12 | 05 | 3.9 | 4 | A | AXX | 10 | 4 | 2 | 4 | | 9444 | | LEAR | | 04 | 0015 | | W03 | 05 | 3.8 | | A | AXX | 10 | 1 | 2 | 4 | | 7444 | | LLAN | رن | 04 | 0015 | 311 | WOJ | 0,5 | 3.0 | | ^ | 777 | | • | | 7 | | 9450 | 30442 | MWIL | 04 | 30 | 1445 | s04 | E55 | 05 | 4.7 | 4 | (AP) | | | | | | | 9450 | | VORO | 05 | 02 | 0115 | s03 | E31 | 05 | 4.4 | | | AXX | 14 | 1 | | 2 | | 9450 | | TACH | 05 | 02 | 0415 | s03 | E29 | 05 | 4.3 | | | AXX | 3 | 1 | 1 | 3 | | 9450 | | RAMY | 05 | 02 | 1220 | s03 | E24 | 05 | 4.3 | | В | CRO | 10 | 2 | 1 | 4 | | 9450 | | HOLL | 05 | 02 | 1408 | | E24 | 05 | 4.4 | | Α | AXX | 10 | 1 | 1 | 3 | | 9450 | 30442 | MWIL | | 02 | 1430 | | E23 | 05 | 4.3 | 4 | (AP) | | | | | | | 9450 | | LEAR | | 03 | 0010 | | E17 | 05 | 4.3 | | Α | AXX | | 1 | | 4 | | 9450 | | KAND | | 03 | 0700 | | E14 | 05 | 4.3 | | _ | AX | 40 | 1 | | 3 | | 9450 | | SVTO | | 03 | 0825 | | E13 | 05 | 4.3 | | A | AXX | 10 | 1 | 1 | 2 | | 9450 | | SVTO | | 04 | 0529 | | E03 | 05 | 4.4 | | В | CRO | 20 | 4<br>4 | 2 | 3<br>3 | | 9450<br>9450 | | KAND<br>RAMY | | 04<br>04 | 0705<br>1218 | | E03<br>W01 | 05<br>05 | 4.5<br>4.4 | | В | BXO<br>CSO | 20 | 2 | 2<br>3 | 2 | | 9450 | 30442 | MWIL | | 04 | 1430 | | W03 | 05 | 4.4 | 4 | (BP) | | 20 | 2 | , | _ | | 9450 | 30442 | HOLL | | 04 | 1700 | | W04 | 05 | 4.4 | 7 | В | CAO | 20 | 11 | 3 | 2 | | 9450 | | LEAR | | 05 | 0120 | | W08 | 05 | 4.4 | | В | DRO | 20 | 8 | 4 | 1 | | 9450 | | TACH | | 05 | 0540 | | W12 | 05 | | | | BRO | 25 | 3 | 8 | 4 | | 9450 | | KAND | | 05 | 0820 | | W11 | 05 | 4.5 | | | вхо | | 6 | 3 | 3 | | 9450 | | SVTO | | 05 | 1025 | | W13 | 05 | 4.5 | | В | DAO | 30 | 5 | 4 | 2 | | 9450 | | RAMY | | 05 | 1218 | | W13 | 05 | 4.5 | | В | DAO | 60 | 3 | 4 | 2 | | 9450 | 30442 | MWIL | | 05 | 1430 | | W17 | 05 | 4.3 | 4 | (BP) | | | | | | | 9450 | | HOLL | | 05 | 1440 | | W16 | 05 | 4.4 | | В | BXO | 20 | 9 | 4 | 3 | | 9450 | | VORO | 05 | 06 | 0121 | S03 | W24 | 05 | 4.3 | | | AXX | 15 | 1 | | 2 | | 9450 | | TACH | 05 | 06 | 0639 | S02 | W28 | 05 | 4.2 | | | AXX | 15 | 1 | 1 | 4 | | 9450 | 30442 | MWIL | 05 | 06 | 1430 | | W31 | 05 | 4.3 | 5 | (AP) | | | | | | | 9450 | | HOLL | | 06 | 1440 | | W32 | 05 | 4.2 | | Α | HSX | 20 | 2 | 1 | 3 | | 9450 | | VORO | | 07 | 0011 | | W36 | 05 | 4.3 | | | BXI | 21 | 6 | 6 | 2 | | 9450 | | LEAR | | 07 | 0101 | | W36 | 05 | 4.3 | | В | BXO | 10 | 5 | 5 | 4 | | 9450 | | SVTO | | 07 | 0548 | | W39 | 05 | 4.3 | | В | DSO | 30 | 4 | 7 | 3 | | 9450 | | RAMY | | 07 | 1320 | | W43 | 05 | 4.3 | | В | DSO | 10 | 3 | 7 | 4 | | 9450 | 70//0 | HOLL | | 07 | 1450 | | W45 | 05 | 4.2 | | В | CAO | 50 | 3 | 7 | 3 | | 9450 | 30442 | MWIL | | 07 | 1545 | | W45 | 05 | 4.3 | 4 | (B) | | | _ | _ | - | | 9450 | | LEAR | | 80 | 0215 | | W55 | 05 | 4.0 | | A | AXX | 20 | 2 | 2 | 3 | | 9450 | | VORO | | 80 | 0324 | | W55 | 05 | 4.0 | | | AXX | 7 | 1 | 4 | 2 | | 9450 | | LEAR | UD | 09 | 0525 | 501 | W68 | 05 | 4.1 | | Α | AXX | 10 | 1 | 1 | 2 | | 9445 | | KAND | 04 | 28 | 0605 | | E80 | 05 | 4.5 | | | HS | | 1 | 2 | 4 | | 9445 | | RAMY | 04 | 28 | 1208 | | E84 | 05 | 5.0 | | В | CAO | 60 | 3 | 5 | 2 | | 9445 | | HOLL | | 28 | 1450 | | E79 | 05 | 4.7 | | В | CAO | 60 | 5 | 5 | 3 | | 9445 | 30437 | MWIL | 04 | 28 | 1500 | | E79<br>E78 | 05 | 4.7<br>4.9 | 4 | (AP) | | 269 | | | | | 9445 | | VORO | | 28 | 2144 | | | 05 | | | | DAI | | 6 | 10 | 2 | # S U N S P O T G R O U P S (Ordered by Central Meridian Passage Date) MAY | NOAA/ | Mt | | 0bser | vation | | | <u>.</u> | | | | | Corrected | <b>.</b> | Long. | | |---------------|-----------------|--------------|----------------|----------------|-----|------------|----------|------------|----------|--------------|---------------|---------------------|---------------|-----------------|------------------| | USAF<br>Group | Wilson<br>Group | Sta | Mo Da | Time<br>y (UT) | Lat | CMD | | MP<br>Day | Max<br>H | Mag<br>Class | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent<br>(Deg) | Qual | | 9445 | | LEAR | 04 29 | 0008 | N25 | E72 | 05 | 4.6 | | В | DAO | 120 | 11 | 10 | 4 | | 9445 | | TACH | 04 29 | 0422 | N25 | E74 | 05 | 4.9 | | | BRO | 21 | 3 | 7 | 1 | | 9445 | | SVTO | 04 29 | | | E72 | 05 | 4.8 | | В | DAO | 210 | 7 | 8 | 2 | | 9445 | | KAND | 04 29 | | | E70 | 05 | 4.7 | | _ | EAO | 240 | 8 | 14 | 5 | | 9445 | | RAMY | 04 29 | | | E70 | 05 | 4.9 | | В | ESO | 260 | 8 | 15<br>10 | 3<br>3 | | 9445 | 70/77 | HOLL | 04 29 | | | E63 | 05<br>05 | 4.5<br>4.8 | 4 | B | DSO | 210 | 11 | 10 | 3 | | 9445<br>9445 | 30437 | MWIL<br>VORO | 04 29 | | | E67<br>E65 | 05 | 4.9 | 4 | (BP) | DAI | 454 | 5 | 11 | 2 | | 9445 | | LEAR | 04 30 | | | E61 | 05 | 4.7 | | В | FAO | 300 | 20 | 16 | 4 | | 9445 | | SVTO | 04 30 | | | E58 | 05 | 4.7 | | В | EAO | 340 | 15 | 13 | 3 | | 9445 | | TACH | 04 30 | | | E59 | 05 | 4.8 | | _ | DAI | 174 | 8 | 6 | 3 | | 9445 | | KAND | 04 30 | | N24 | E58 | 05 | 4.8 | | | EAO | | 11 | 14 | 2 | | 9445 | | HOLL | 04 30 | | | E55 | 05 | 4.8 | | В | EAO | 360 | 27 | 14 | 3 | | 9445 | 30437 | MWIL | 04 30 | | | E54 | 05 | 4.8 | 5 | (BG) | | | | | _ | | 9445 | | LEAR | 05 01 | | | E48 | 05 | 4.7 | | В | EAO | 350 | 22 | 12 | 2<br>3 | | 9445 | | SVTO | 05 01 | | | E46 | 05 | 4.9 | | В | FAO | 440 | 28 | 20 | 3 | | 9445 | | KAND | 05 01<br>05 01 | | | E44 | 05 | 4.7 | | ь | FAO | 720 | 17<br>23 | 17<br>16 | 4<br>3 | | 9445<br>9445 | | RAMY | 05 01 | | | E43<br>E42 | 05<br>05 | 4.8<br>4.8 | | B<br>B | EAI<br>FAI | 320<br>450 | 23<br>37 | 16<br>17 | 3 | | 9445 | 30437 | HOLL<br>MWIL | 05 01 | | | E42 | 05 | 4.8 | 5 | (D ) | FAI | 450 | 31 | 17 | , | | 9445 | 30437 | LEAR | 05 02 | | | E34 | 05 | 4.6 | , | В | FAI | 330 | 35 | 15 | 3 | | 9445 | | VORO | 05 02 | | | E36 | 05 | 4.8 | | | DAI | 429 | 12 | 17 | 2 | | 9445 | | TACH | 05 02 | | | E31 | 05 | 4.6 | | | DAI | 32 | 14 | 12 | 3 | | 9445 | | SVTO | 05 02 | | | E33 | 05 | 4.8 | | BG | FSI | 450 | 32 | 19 | 3<br>2<br>2<br>4 | | 9445 | | KAND | 05 02 | | | E31 | 05 | 4.7 | | | FSI | | 26 | 20 | 2 | | 9445 | | RAMY | 05 02 | 1220 | N25 | E29 | 05 | 4.8 | | В | FAC | 280 | 38 | 19 | | | 9445 | | HOLL | 05 02 | 2 1408 | N24 | E28 | 05 | 4.7 | | В | FAI | 330 | 51 | 18 | 3 | | 9445 | 30437 | MWIL | 05 02 | | | E27 | 05 | 4.7 | 5 | (D) | | | | | | | 9445 | | LEAR | 05 03 | | | E21 | 05 | 4.6 | | BG | FAI | 250 | 30 | 19 | 4 | | 9445 | | VORO | 05 03 | | | E23 | 05 | 4.8 | | | DAI | 374 | 10 | 17 | 2 | | 9445 | | KAND | 05 03 | | | E19 | 05 | 4.8 | | _ | FSC | 200 | 22 | 19 | 3<br>2<br>3 | | 9445 | | SVTO | 05 03 | | | E17 | 05 | 4.7 | | В | FAI | 200<br>100 | 26<br>14 | 20<br>17 | 2 | | 9445<br>9445 | 30437 | TACH<br>MWIL | 05 03<br>05 03 | | | E16<br>E13 | 05<br>05 | 4.6<br>4.6 | 4 | (BG) | DAI | 100 | 14 | 17 | 3 | | 9445<br>9445 | 30437 | HOLL | 05 03 | | | E17 | 05 | 4.9 | 4 | BG BG | FAI | 290 | 41 | 23 | 2 | | 9445 | | RAMY | 05 03 | | | E16 | 05 | 4.9 | | BG | FAI | 210 | 20 | 17 | 1 | | 9445 | | LEAR | 05 04 | | | E08 | 05 | 4.6 | | BG | FAI | 240 | 34 | 18 | 4 | | 9445 | | SVTO | 05 04 | | | E06 | 05 | 4.7 | | В | FAI | 300 | 30 | 19 | 3 | | 9445 | | KAND | 05 04 | 4 0705 | N25 | E06 | 05 | 4.7 | | | FAC | | 50 | 17 | 3 | | 9445 | | RAMY | 05 04 | 4 1218 | N26 | E03 | 05 | 4.7 | | BG | FAI | 380 | 23 | 19 | 2 | | 9445 | 30437 | MWIL | 05 04 | 4 1430 | N24 | E01 | 05 | 4.7 | 5 | ( D) | | | | | | | 9445 | | HOLL | 05 04 | | | W01 | 05 | 4.6 | | BG | FAI | 330 | 67 | 20 | 2 | | 9445 | | LEAR | 05 0 | | | W04 | 05 | 4.7 | | BG | FAI | 270 | 34 | 17 | 1 | | 9445 | | TACH | 05 05 | | | W09 | 05 | 4.5 | | | DAI | 287 | 14 | 18 | 4 | | 9445 | | KAND | 05 0 | | | W07 | 05 | 4.8 | | | FAC | 100 | 31<br>75 | 20 | 3 | | 9445 | | SVTO | 05 0 | | | W09 | 05<br>05 | 4.7 | | В | FAI | 190<br>280 | 35<br>15 | 19<br>19 | 2<br>2 | | 9445<br>9445 | 30437 | RAMY<br>MWIL | 05 0!<br>05 0! | | | W11 | 05<br>05 | 4.9<br>4.7 | 5 | BG<br>(BG) | FAI | 200 | כו | 17 | _ | | 9445 | 30437 | HOLL | 05 0 | | | W13 | 05 | 4.6 | , | BG | FAI | 190 | 42 | 21 | 3 | | 9445 | | VORO | 05 0 | | | W17 | 05 | | | Du | DAI | 229 | 12 | 19 | 2 | | 9445 | | TACH | 05 0 | | | W20 | 05 | | | | CAI | 180 | 14 | 18 | 4 | | 9445 | 30437 | MWIL | 05 0 | | | W24 | 05 | | 5 | (BG) | | | • • | | | | 9445 | | HOLL | 05 0 | | | W25 | 05 | | | BG | FAI | 180 | 34 | 20 | 3 | | 9445 | | VORO | 05 0 | | | W31 | 05 | | | | DAI | 159 | 16 | 18 | 2 | | 9445 | | LEAR | 05 0 | | N25 | W30 | 05 | 4.7 | | BG | FAI | 80 | 19 | 21 | 4 | | 9445 | | SVTO | 05 0 | 7 0548 | | W32 | 05 | | | BG | ESI | 160 | 12 | 14 | 3 | | 9445 | | KAND | 05 0 | | | W34 | 05 | | | | FAO | | 5 | 18 | 3 | | 9445 | | RAMY | 05 0 | | | W37 | 05 | | | В | FAI | 70 | 12 | 17 | 4 | | 9445 | | HOLL | 05 0 | | | W38 | 05 | | | BG | FAI | 140 | 16 | 20 | 3 | | 9445 | 30437 | MWIL | 05 0 | | | W37 | 05 | | 4 | (BG) | | | - | 40 | - | | 9445 | | LEAR | 05 0 | | | W42 | 05 | | | В | FAI | 80<br>50 | 7 | 18 | 3 | | 9445 | | VORO | 05 0 | | | W40 | 05 | | | _ | CAO | 59 | 2 | 9 | 2 | | 9445 | | SVTO | 05 0 | | | W45 | 05<br>05 | | | В | FAO<br>ESO | 80 | 5<br>2 | 20<br>11 | 2<br>2 | | 9445<br>9445 | | KAND | 05 00<br>05 00 | | | W45 | 05<br>05 | | | В | FAO | 50 | 6 | 19 | 4 | | 9445 | | RAMY<br>HOLL | 05 0 | | | W50 | 05 | | | BG<br>BG | FAI | 160 | 15 | 19 | 4 | | | 30437 | MWIL | 05 0 | | | W49 | 05 | | 4 | (BG) | | 100 | , , | 17 | 7 | | 9445 | | 1.144 7 7 | U 0 | | | | | | - | | | 400 | _ | | _ | | 9445<br>9445 | 30431 | LEAR | 05 0 | 9 0525 | N2ª | W54 | 05 | 5.0 | | BG | FAO | 100 | 9 | 19 | 2 | # SUNSPOT GROUPS (Ordered by Central Meridian Passage Date) MAY | NOAA/<br>Usaf | Mt<br>Wilson | 0.1 | Observ | Time | | | MP. | | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | 0 | |---------------|--------------|--------------|----------------|--------------|--------------|--------|-----|----------|-----|-----------|------------|-------------------|--------|-----------------|-----| | roup | Group | Sta | Mo Day | / (UT) | Lat | CMD MC | Day | y<br> | Н | Class | Class | (10-6 Hemi) | Count | (Deg) | Qua | | 9445 | | TACH | 05 09 | 0641 | N28 1 | | | .3 | | | BR | 16 | 4 | 3 | 3 | | 9445 | | KAND | 05 09 | 1335 | N25 1 | w55 05 | | .3 | | | CSO | | 3 | 3 | 3 | | 9445 | 30437 | MWIL | 05 09 | 1415 | N25 1 | | | .8 | 4 | (BG) | | | | | | | 9445 | | HOLL | 05 09 | 1751 | N24 1 | | | .5 | | В | CSO | 70 | 8 | 21 | 3 | | 9445 | | SVTO | 05 10 | 0537 | N21 1 | W68 05 | 5 5 | .0 | | A | HSX | 30 | 1 | 1 | 2 | | 445A | | HOLL | 04 30 | 1310 | N05 I | E61 05 | 5 5 | . 1 | | Α | AXX | | 1 | 1 | 3 | | 9445A | | LEAR | 05 03 | 0010 | N07 | E24 05 | 5 4 | .8 | | Α | AXX | | 1 | | 4 | | 9445A | | LEAR | 05 04 | 0015 | N06 I | E12 05 | | .9 | | Α | AXX | | 2 | 1 | 4 | | 9445A | | SVTO | 05 04 | 0529 | N05 I | | | .9 | | Α | AXX | | 1 | | 3 | | 9445A | | KAND | 05 04 | 0705 | N06 I | | | .9 | | | AX | | 1 | | 3 | | 9445A | 30445 | MWIL | 05 04 | 1430 | N06 I | | | .8 | 4 | (BP) | **** | | 4 | | | | 9445A | | HOLL | 05 04 | 1700 | N05 I | E00 05 | ) 4 | .7 | | A | AXX | | 1 | | 2 | | 9445B | 30438 | MWIL | 04 28 | 1500 | <b>S34</b> | E83 05 | 5 5 | .2 | 3 | AP | | | | | | | 9448A | | SVTO | 05 03 | 0825 | N23 | E44 05 | 5 6 | .7 | | A | HAX | 100 | 5 | 3 | 2 | | 2448 | | SVTO | 05 01 | 0700 | N23 | | | .1 | | A | HRX | <b>3</b> 0 | 1 | 3 | 3 | | 448 | | RAMY | 05 01 | 1140 | N21 | | | .6 | | A | HSX | 70<br>120 | 1 | 2 | - | | 448 | 70//7 | HOLL | 05 01<br>05 01 | 1420<br>1430 | N21 <br>N22 | | | .6<br>.6 | E | A<br>(AD) | HSX | 120 | 1 | 2 | | | 9448<br>9448 | 30443 | MWIL<br>LEAR | 05 01 | 0007 | N22 <br>N23 | | | .6<br>.5 | 5 | (AP) | HSX | 120 | 1 | 2 | ; | | 448<br>448 | | VORO | 05 02 | 0115 | N20 | | | .5<br>.5 | | A | HAX | 250 | i | ۵. | | | 448 | | TACH | 05 02 | 0415 | N22 | | | .6 | | | HSX | 100 | i | 3 | | | 448 | | SVTO | 05 02 | 0504 | N23 | | | .5 | | Α | HSX | 180 | i | 4 | | | 448 | | KAND | 05 02 | 0740 | N21 | | | .5 | | | HA | | 4 | 3 | | | 448 | | RAMY | 05 02 | 1220 | N21 | E66 0! | 5 7 | .6 | | В | CAO | 100 | 2 | 3 | | | 448 | | HOLL | 05 02 | 1408 | N21 | E66 0! | 5 7 | .6 | | Α | HAX | 170 | 4 | 3 | | | 448 | 30443 | MWIL | 05 02 | 1430 | N22 | | | .6 | 5 | (AP) | | | | | | | 448 | | LEAR | 05 03 | 0010 | N22 | | | .5 | | Α | HAX | 100 | 2 | 1 | | | 2448 | | VORO | 05 03 | 0020 | N21 | | | .7 | | | HAX | 148 | 1 | - | | | 2448 | | KAND | 05 03 | 0700 | N22 | | | .7 | | | HS | 100 | 2<br>5 | 3<br>3 | | | 9448<br>9448 | | SVTO | 05 03<br>05 03 | 0825<br>0959 | N23<br>N23 | | | .5<br>.5 | | A | HAX<br>HSX | 100<br>102 | 3 | 1 | | | 448 | | TACH<br>HOLL | 05 03 | 1430 | N23 | | | .7 | | В | DAO | 100 | 8 | 5 | | | 448 | 30443 | MWIL | 05 03 | 1430 | N22 | | | .6 | 5 | (AP) | DAG | 100 | • | - | | | 448 | 30443 | RAMY | 05 03 | 1550 | N21 | | | .6 | - | В | CSO | 100 | 2 | 3 | | | 448 | | LEAR | 05 04 | 0015 | N20 | | | .6 | | В | CAO | 110 | 5 | 5 | | | 2448 | | SVTO | 05 04 | 0529 | N21 | | | .6 | | В | DAO | 150 | 7 | 5 | | | 448 | | KAND | 05 04 | 0705 | N21 | E43 0! | 5 7 | .6 | | | HA | | 6 | 4 | | | 9448 | | RAMY | 05 04 | 1218 | N21 | E40 0! | 5 7 | .6 | | В | CSO | 80 | 2 | 3 | | | 9448 | 30443 | MWIL | 05 04 | 1430 | N21 | | | .6 | 5 | (AP) | | | | | | | 9448 | | HOLL | 05 04 | 1700 | N20 | | | .5 | | В | CAO | 110 | 7 | 3 | | | 2448 | | LEAR | | 0120 | N21 | | 5 7 | .7 | | В | DAO | 130 | 5 | 3 | | | 2448 | | TACH | 05 05 | 0540 | N22 | | | .5 | | | HSX | 160 | 1 | 2 | | | 9448<br>9448 | | KAND<br>SVTO | 05 05<br>05 05 | 0820<br>1025 | N22<br>N21 | | | .6 | | В | HA<br>CAO | 130 | 7<br>5 | 3<br>3 | | | 9448 | | RAMY | 05 05 | 1218 | N21 | | | .7 | | В | HSX | 110 | 1 | 2 | | | 9448 | 30443 | MWIL | 05 05 | 1430 | N21 | | | .6 | 5 | (AP) | 1137 | 110 | • | - | | | 448 | 30443 | HOLL | 05 05 | 1440 | N20 | | | .7 | - | В | CAO | 90 | 8 | 5 | | | 448 | | VORO | 05 06 | 0121 | N22 | | | .7 | | | HAX | 150 | 1 | | | | 448 | | TACH | 05 06 | 0639 | N21 | E18 0 | 5 7 | .6 | | | HSX | 200 | 1 | 2 | | | 448 | 30443 | MWIL | 05 06 | 1430 | N21 | E13 0 | | .6 | 5 | (AP) | | | | | | | 9448 | | HOLL | 05 06 | 1440 | N21 | | | .5 | | Α | HAX | 100 | 4 | 2 | | | 2448 | | VORO | 05 07 | 0011 | N21 | | | .6 | | _ | ннх | 196 | 2 | _ | | | 2448 | | LEAR | 05 07 | 0101 | N21 | | | .6 | | В | CSO | 100 | 5 | 8 | | | 9448 | | SVTO | 05 07 | 0548 | N21 | | | .5 | | В | CSO | 120 | 4 | 5 | | | 9448<br>9448 | | KAND<br>RAMY | 05 07<br>05 07 | 0900<br>1320 | N20<br>N22 | | | .6 | | В | HA<br>CSO | 140 | 3<br>5 | 2<br>3 | | | 9448<br>9448 | | HOLL | 05 07 | 1450 | N22 | | | .5 | | В | CSO | 170 | 9 | 6 | | | 9448<br>9448 | 30443 | MWIL | 05 07 | 1545 | N21 | | | .6 | 5 | (AP) | | 110 | , | J | | | 9448 | 20473 | LEAR | 05 08 | 0215 | N22 | | | .6 | , | A | HSX | 110 | 8 | 5 | | | 9448 | | VORO | 05 08 | 0324 | N21 | | | .6 | | | HAX | 244 | 8 | - | | | 9448 | | SVTO | 05 08 | 0850 | N22 | | | .7 | | В | CAO | 120 | 6 | 5 | | | 9448 | | KAND | 05 08 | 0955 | N23 | | | .6 | | | CSO | | 3 | 5 | | | 9448 | | RAMY | 05 08 | 1204 | N22 | W10 0 | 5 7 | .7 | | В | CSO | 120 | 8 | 5 | | | 9448 | | HOLL | 05 08 | 1421 | N21 | | | .7 | | В | CSO | 110 | 8 | 6 | | | 9448 | 30443 | MWIL | 05 08 | 1430 | N22 | W12 0 | - 7 | .7 | 5 | (BG) | | | | | | MAY | NOAA/ | Mt | | 0bserv | ation | | | | | | | | Corrected | | Long. | | |-------|---------|------|---------|-------|-------|---------------|------------|------|-----|-------|-------|-------------|-------|--------|------------------| | USAF | Wilson | | ODSCI V | Time | | | CM | ID | Max | Mag | Spot | Area | Spot | Extent | | | | | C+- | Ma Day | | lot f | CMD N | | | | - | | | Count | | Oual | | Group | Group | Sta | Mo Day | (01) | Lat ( | יו טוא. | 10 | Day | Н | Class | Class | (10-6 Hemi) | Count | (Deg) | Qual | | | | | 25 22 | 0505 | | 124 6 | | 7, | | | 200 | 420 | | , | | | 9448 | | LEAR | 05 09 | 0525 | N21 V | | )5 | 7.6 | | В | CSO | 120 | 5 | 4 | 2 | | 9448 | | SVTO | 05 09 | 0534 | N21 V | | )5 | 7.8 | | В | CSO | 110 | 2 | 8 | 3 | | 9448 | | TACH | 05 09 | 0641 | N22 V | <b>J</b> 21 ( | )5 | 7.7 | | | HSX | 200 | 1 | 2 | 3 | | 9448 | | KAND | 05 09 | 1335 | N21 V | N24 ( | )5 | 7.7 | | | HS | | 1 | 2 | 3 | | 9448 | 30443 | MWIL | 05 09 | 1415 | N22 V | | )5 | 7.7 | 5 | (BP) | | | | | | | 9448 | 30443 | HOLL | 05 09 | 1751 | N21 V | | )5 | 7.5 | - | A | HSX | 100 | 3 | 2 | 3 | | 9448 | | LEAR | 05 10 | 0332 | N21 V | | )5 | 7.6 | | Â | HSX | 100 | 4 | 3 | 4 | | | | | | | | | | | | | | | | 3 | | | 9448 | | SVTO | 05 10 | 0537 | N21 V | | )5 | 7.6 | | Α | HSX | 120 | 2 | | 2 | | 9448 | | KAND | 05 10 | 0605 | N21 V | | )5 | 7.7 | | | HS | | 2 | 3 | 3 | | 9448 | | TACH | 05 10 | 0725 | N22 V | | )5 | 7.5 | | | HSX | 180 | 1 | 2 | 3 | | 9448 | | RAMY | 05 10 | 1245 | N22 V | <b>J38</b> ( | )5 | 7.6 | | Α | HSX | 80 | 1 | 2 | 1 | | 9448 | | HOLL | 05 10 | 1350 | N20 V | <b>J</b> 39 ( | )5 | 7.6 | | Α | HAX | 110 | 1 | 2 | 4 | | 9448 | 30443 | MWIL | 05 10 | 1430 | N22 V | | )5 | 7.6 | 5 | (AP) | | | | | | | 9448 | 30443 | VORO | 05 10 | 2117 | N21 V | | )5 | 7.7 | - | (// | HAX | 181 | 1 | | 2 | | | | | | | | | | | | | | | | 2 | 7 | | 9448 | | LEAR | 05 11 | 0230 | N21 V | | )5 | 7.6 | | A | HSX | 90 | 1 | 2 | 3 | | 9448 | | SVTO | 05 11 | 0520 | N21 V | | )5 | 7.6 | | Α | HSX | 130 | 1 | 3 | 3 | | 9448 | | KAND | 05 11 | 0645 | N22 V | N47 ( | )5 | 7.7 | | | HS | | 1 | 2 | 3 | | 9448 | | TACH | 05 11 | 0651 | N22 V | 146 ( | )5 | 7.8 | | | HSX | 110 | 1 | 2 | 3 | | 9448 | | RAMY | 05 11 | 1203 | N23 V | <b>J</b> 51 ( | )5 | 7.6 | | Α | HSX | 100 | 1 | 2 | 2 | | 9448 | 30443 | MWIL | 05 11 | 1430 | N22 V | | )5 | 7.7 | 5 | (AP) | | | | | | | 9448 | 30443 | HOLL | 05 11 | 1445 | N21 V | | )5 | 7.5 | , | A | HAX | 140 | 2 | 2 | 4 | | | | | | | | | - | | | Α. | | | | 2 | | | 9448 | | VORO | 05 11 | 2115 | N21 V | | )5 | 7.7 | | | HAX | 170 | 1 | _ | 2 | | 9448 | | LEAR | 05 12 | 0220 | N22 V | | )5 | 7.6 | | Α | HAX | 100 | 1 | 2 | 2 | | 9448 | | KAND | 05 12 | 0550 | N21 V | | )5 | 7.7 | | | HS | | 2 | 2 | 3 | | 9448 | | SVTO | 05 12 | 0840 | N21 V | <b>4</b> 62 ( | )5 | 7.6 | | Α | HAX | 90 | 1 | 2 | 3 | | 9448 | | RAMY | 05 12 | 1340 | N23 V | W64 ( | )5 | 7.6 | | Α | HSX | 100 | 1 | 2 | 3 | | 9448 | | HOLL | 05 12 | 1503 | N23 V | J66 ( | )5 | 7.5 | | Α | HSX | 110 | 1 | 2 | 1 | | 9448 | | VORO | 05 12 | 2107 | N21 V | | )5 | 7.7 | | •• | HAX | 149 | 1 | _ | 2 | | 9448 | 70//7 | | 05 12 | 2200 | N22 V | | )5 | 7.7 | 3 | (AP) | шлл | 147 | • | | - | | | 30443 | MWIL | | | | | | | 3 | | ucv | 60 | 4 | 2 | 7 | | 9448 | | LEAR | 05 13 | 0145 | N21 V | | )5 | 7.5 | | Ą | HSX | | 1 | 2 | 3 | | 9448 | | SVTO | 05 13 | 0515 | N23 1 | | )5 | 7.6 | | A | HSX | 120 | 1 | 4 | 3 | | 9448 | | TACH | 05 13 | 0519 | N22 \ | W74 ( | )5 | 7.5 | | | HSX | 70 | 1 | 1 | 2 | | 9448 | | KAND | 05 13 | 0935 | N22 1 | W77 ( | )5 | 7.5 | | | HS | | 1 | 2 | 3 | | 9448 | | RAMY | 05 13 | 1115 | N23 V | W79 ( | )5 | 7.4 | | Α | HSX | 90 | 1 | 2 | 3 | | 9448 | 30443 | MWIL | 05 13 | 1345 | N21 V | | )5 | 7.6 | 4 | (AP) | | | | | | | 7440 | 30443 | HWIL | 05 15 | 1343 | 1421 | <b>*</b> 10 ( | ,, | , .0 | 7 | (//// | | | | | | | 0/57 | | | 05 00 | 0505 | 000 1 | 140 | \F | 7.0 | | _ | DVO | 10 | , | 7 | 2 | | 9453 | | LEAR | 05 09 | 0525 | S08 I | | )5 | 7.9 | | В | ВХО | 10 | 4 | 3 | 2 | | 9453 | | SVTO | 05 09 | 0534 | S09 I | | )5 | 7.9 | | Α | AXX | 10 | 3 | 4 | 3 | | 9453 | | TACH | 05 09 | 0641 | S06 I | W19 ( | )5 | 7.8 | | | BR | 8 | 3 | 2 | 3 | | 9453 | | KAND | 05 09 | 1335 | S07 I | W21 ( | )5 | 8.0 | | | CAO | | 3 | 4 | 3 | | 9453 | 30448 | MWIL | 05 09 | 1415 | S07 I | W23 ( | )5 | 7.9 | 5 | (B) | | | | | | | 9453 | | HOLL | 05 09 | 1751 | S08 I | | )5 | 7.9 | - | В | CSO | 30 | 6 | 4 | 3 | | 9453 | | LEAR | 05 10 | 0332 | S08 I | | )5 | 8.0 | | Ā | HRX | 30 | 1 | • | 4 | | | | | | | | | | | | | | 30 | 4 | 4 | | | 9453 | | SVTO | 05 10 | 0537 | S07 I | | )5 | 7.8 | | В | CRO | 30 | | 6 | 2 | | 9453 | | KAND | 05 10 | 0605 | S07 I | W29 ( | )5 | 8.1 | | | AX | _ | 1 | 1 | 3 | | 9453 | | TACH | 05 10 | 0725 | S07 I | | )5 | 8.0 | | | AXX | 3 | 1 | 1 | 3 | | 9453 | 30448 | MWIL | 05 10 | 1430 | S07 I | W35 ( | )5 | 8.0 | 3 | (AF) | | | | | | | | | | | | | | | | | • | | | | | | | 9449 | | LEAR | 05 02 | 0007 | S14 I | F81 ( | 05 | 8.1 | | Α | HSX | 110 | 1 | 2 | 3 | | | | | | | | | | 8.2 | | ^ | HAX | 66 | i | _ | 2 | | 9449 | | VORO | 05 02 | 0115 | S16 I | | 25 | | | | | | | 4 | - 7 | | 9449 | | TACH | 05 02 | 0415 | S16 I | | 05 | 8.5 | | _ | HSX | 10 | 1 | 1 | 2 | | 9449 | | SVTO | 05 02 | 0504 | S13 I | | 05 | 8.2 | | Α | HSX | 120 | 1 | 3 | 2 | | 9449 | | KAND | 05 02 | 0740 | S16 I | | <b>)</b> 5 | 8.5 | | | HS | | 1 | 2 | 3<br>2<br>2<br>4 | | 9449 | | RAMY | 05 02 | 1220 | S16 I | E75 ( | 05 | 8.2 | | Α | HSX | 90 | 1 | 1 | | | 9449 | | HOLL | 05 02 | 1408 | S16 I | | 05 | 8.3 | | Α | HSX | 120 | 2 | 2 | 3 | | 9449 | 30444 | MWIL | 05 02 | 1430 | S16 | | 05 | 8.4 | 5 | (AP) | | | _ | - | _ | | 9449 | 20-17-7 | | 05 02 | 0010 | S15 I | | 05 | 8.3 | - | A | HSX | 50 | 1 | 2 | 4 | | | | LEAR | | | | | | | | Α. | | | | ے | | | 9449 | | VORO | 05 03 | 0020 | S16 I | | 05 | 8.4 | | | HAX | 160 | 1 | _ | 2 | | 9449 | | KAND | 05 03 | 0700 | S15 I | | 05 | 8.4 | | | HS | | 1 | 2 . | 3 | | 9449 | | SVTO | 05 03 | 0825 | S14 | | 05 | 8.2 | | Α | HRX | 50 | 1 | 2 | 2 | | 9449 | | TACH | 05 03 | 0959 | S15 I | E64 ( | 05 | 8.3 | | | HSX | 100 | 1 | 1 | 3 | | 9449 | 30444 | MWIL | 05 03 | 1430 | S16 | | 05 | 8.3 | 4 | (AP) | | | | | | | 9449 | | HOLL | 05 03 | 1430 | \$18 | | 05 | 8.4 | • | A | HAX | 120 | 1 | 2 | 2 | | 9449 | | | 05 03 | 1550 | S18 | | 05 | 8.4 | | | HSX | 80 | i | 2 | 1 | | | | RAMY | | | | | | | | A | | | | | | | 9449 | | LEAR | 05 04 | 0015 | S17 | | 05 | 8.3 | | A | HSX | 70 | 1 | 1 | 4 | | 9449 | | SVTO | 05 04 | 0529 | S16 | | 05 | 8.3 | | A | HSX | 100 | 1 | 2 | 3 | | 9449 | | KAND | 05 04 | 0705 | S16 | | 05 | 8.4 | | | HS | | 1 | 2 | 3 | | 9449 | | RAMY | 05 04 | 1218 | s17 | E49 | 05 | 8.2 | | Α | HSX | 90 | 1 | 2 | 2 | | 9449 | 30444 | MWIL | 05 04 | 1430 | s16 | E49 | 05 | | 5 | (AP) | | | | | | | | | | | | | | | | | , | | | | | | | | | | | | | | | | | | | | | | | MAY | NOAA/ | Mt | | 0bser | vation | | | | | <del></del> | | | Corrected | | Long. | | |--------------|--------|--------------|----------------|--------------|------------|-------------|----------|--------------|-------------|--------|------------|-------------|--------|--------|--------| | USAF | Wilson | | | Time | | | CM | | Max | Mag | Spot | Area | Spot | Extent | | | Group | Group | Sta | Mo Da | y (UT) | Lat | CMD | Мо | Day | Н | Class | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9449 | | HOLL | 05 04 | 1700 | | E47 | 05 | 8.3 | | A | HAX | 80 | 1 | 2 | 2 | | 9449 | | LEAR | 05 05 | 0120 | s17 | | 05 | 8.3 | | Α | HSX | 110 | 2 | 2 | 1 | | 9449 | | TACH | 05 05 | 0540 | | E40 | 05 | 8.3 | | | HSX | 100 | 1 | 1 | 4 | | 9449 | | KAND | 05 05 | 0820 | | E39 | 05 | 8.3 | | _ | HA | 00 | 3 | 2 | 3 | | 9449 | | SVTO | 05 05 | 1025 | | E38 | 05 | 8.3 | | A | HAX | 90 | 2 | 2 | 2 | | 9449 | 70/// | RAMY | 05 05 | 1218 | | E38 | 05 | 8.4 | - | A | HSX | 70 | 1 | 2 | 2 | | 9449 | 30444 | MWIL | 05 05 | 1430 | | E36 | 05 | 8.3 | 5 | (AP) | HAV | 100 | 2 | 2 | 3 | | 9449<br>9449 | | HOLL | 05 05<br>05 06 | 1440<br>0121 | S17 | E36 | 05<br>05 | 8.3<br>8.3 | | A | HAX<br>HAX | 94 | 1 | 2 | 2 | | 9449 | | VORO<br>TACH | 05 06 | 0639 | | E27 | 05 | 8.3 | | | HSX | 150 | ż | 2 | 4 | | 9449 | 30444 | MWIL | 05 06 | 1430 | | E23 | 05 | 8.3 | 5 | (AP) | 1137 | 150 | _ | _ | 7 | | 9449 | 30444 | HOLL | 05 06 | 1440 | | E22 | 05 | 8.3 | _ | A | HAX | 80 | 2 | 2 | 3 | | 9449 | | VORO | 05 07 | 0011 | | E17 | 05 | 8.3 | | • | HAX | 148 | 2 | _ | 2 | | 9449 | | LEAR | 05 07 | 0101 | | E17 | 05 | 8.3 | | Α | HAX | 90 | 2 | 2 | 4 | | 9449 | | SVTO | 05 07 | 0548 | | E14 | 05 | 8.3 | | Α | HAX | 100 | 2 | 3 | 3 | | 9449 | | KAND | 05 07 | 0900 | | E13 | 05 | 8.4 | | | HA | | 3 | 2 | 3 | | 9449 | | RAMY | 05 07 | 1320 | | E10 | 05 | 8.3 | | Α | HAX | 90 | 2 | 2 | 4 | | 9449 | | HOLL | 05 07 | 1450 | s17 | E09 | 05 | 8.3 | | В | CAO | 80 | 3 | 7 | 3 | | 9449 | 30444 | MWIL | 05 07 | 1545 | s17 | E11 | 05 | 8.5 | 5 | (BP) | | | | | | | 9449 | | LEAR | 05 08 | 0215 | s16 | E04 | 05 | 8.4 | | Α | HAX | 80 | 2 | 3 | 3 | | 9449 | | VORO | 05 08 | 0324 | s17 | E03 | 05 | 8.4 | | | HAX | 109 | 2 | | 2 | | 9449 | | SVTO | 05 08 | 0850 | | E01 | 05 | 8.4 | | Α | HRX | 80 | 2 | 3 | 2 | | 9449 | | KAND | 05 08 | 0955 | | E01 | 05 | 8.5 | | | HA | | 2 | 2 | 2 | | 9449 | | RAMY | 05 08 | 1204 | | W02 | 05 | 8.3 | | В | DSO | 70 | 3 | 3 | 4 | | 9449 | | HOLL | 05 08 | 1421 | | W01 | 05 | 8.5 | _ | В | CSO | 60 | 7 | 6 | 4 | | 9449 | 30444 | MWIL | 05 08 | 1430 | | W02 | 05 | 8.4 | 5 | (BP) | | | _ | _ | _ | | 9449 | | LEAR | 05 09 | 0525 | | W11 | 05 | 8.4 | | В | CSO | 60 | 7 | 2 | 2 | | 9449 | | SVTO | 05 09 | 0534 | | W12 | 05 | 8.3 | | В | DAO | 60 | 4 | 3 | 3 | | 9449 | | TACH | 05 09 | 0641 | | W13 | 05 | 8.3 | | | HSX | 63 | 2 | 2 | 3 | | 9449 | 70/// | KAND | 05 09 | 1335 | | W15 | 05 | 8.4 | - | 4551 | HS | | 3 | 2 | 3 | | 9449 | 30444 | MWIL | 05 09 | 1415 | | W17 | 05 | 8.3 | 5 | (BP) | HAV | 50 | _ | 2 | 3 | | 9449 | | HOLL | 05 09 | 1751<br>0332 | | W18 | 05<br>05 | 8.4 | | A | HAX | 60 | 5<br>4 | 2<br>4 | 4 | | 9449<br>9449 | | LEAR<br>SVTO | 05 10<br>05 10 | 0537 | | W23<br>W25 | 05 | 8.4<br>8.3 | | B<br>B | DSO<br>DAO | 70 | 4 | 4 | 2 | | 9449 | | KAND | 05 10 | 0605 | | W24 | 05 | 8.4 | | ь | HS | 70 | 7 | 2 | 3 | | 9449 | | TACH | 05 10 | 0725 | | W26 | 05 | 8.3 | | | HSX | 53 | 4 | 2 | 3 | | 9449 | | RAMY | 05 10 | 1245 | | W28 | 05 | 8.4 | | В | CSO | 30 | 3 | 3 | 1 | | 9449 | | HOLL | 05 10 | 1350 | | W28 | 05 | 8.4 | | В | CSI | 60 | 8 | 3 | 4 | | 9449 | 30444 | MWIL | 05 10 | 1430 | | W30 | 05 | 8.3 | 4 | (AP) | | | _ | | | | 9449 | | VORO | 05 10 | 2117 | | W34 | 05 | 8.3 | - | • | HAX | 54 | 1 | | 2 | | 9449 | | LEAR | 05 11 | 0230 | | W37 | 05 | 8.3 | | В | CSO | 20 | 2 | 1 | 3 | | 9449 | | SVTO | 05 11 | 0520 | <b>S16</b> | W37 | 05 | 8.4 | | В | CSO | 20 | 3 | 3 | 3 | | 9449 | | KAND | 05 11 | 0645 | <b>S16</b> | W38 | 05 | 8.4 | | | HS | | 2 | 1 | 3 | | 9449 | | TACH | 05 11 | 0651 | S15 | W38 | 05 | 8.4 | | | AXX | 10 | 1 | 1 | 3 | | 9449 | | RAMY | 05 11 | 1203 | | W43 | 05 | 8.2 | | Α | HSX | 10 | 1 | 1 | 2 | | 9449 | 30444 | MWIL | 05 11 | 1430 | S15 | W43 | 05 | 8.3 | 4 | (AP) | | | | | | | 9449 | | HOLL | 05 11 | 1445 | | W43 | 05 | 8.3 | | В | CAO | 30 | 2 | 2 | 4 | | 9449 | | VORO | 05 11 | 2115 | | W47 | 05 | 8.3 | | | AXX | 6 | 1 | | 2 | | 9449 | | LEAR | 05 12 | | | W49 | 05 | 8.4 | | Α | AXX | 10 | 2 | 2 | 2 | | 9449 | | KAND | 05 12 | | | <b>W</b> 50 | 05 | 8.4 | | | BXO | | 3 | 3 | 4 | | 9449 | | SVTO | 05 12 | | | W53 | 05 | 8.3 | | Α | AXX | 10 | 2 | 1 | 3 | | 9449 | | RAMY | 05 12 | | | W56 | 05 | 8.3 | | Α | AXX | 10 | 1 | 1 | 3 | | 9449 | | HOLL | 05 12 | 1503 | S17 | W57 | 05 | 8.3 | | A | AXX | 10 | 1 | 1 | 1 | | 9449A | | HOLL | 05 08 | 1421 | N48 | E18 | 05 | 10.1 | | Α | AXX | 10 | 1 | 1 | 4 | | 9451 | | RAMY | 05 04 | | | E80 | | 10.7 | | Α | HSX | 60 | 1 | 3 | 2 | | 9451 | 30446 | MWIL | 05 04 | | | E83 | | 11.0 | 5 | AP | | | | | | | 9451 | | HOLL | 05 04 | | | E80 | | 10.8 | | Α | HAX | 110 | 1 | 2 | 2 | | 9451 | | LEAR | 05 05 | | | E76 | | 10.9 | | Α | HAX | 120 | 1 | 2 | 1 | | 9451 | | TACH | 05 05 | | | E77 | | 11.1 | | | HSX | 90 | 1 | 1 | 4 | | 9451 | | KAND | 05 05 | | | E74 | | 11.0 | | | HS | | 2 | 2 | 3 | | 9451 | | SVTO | 05 05 | | | E71 | | 10.9 | | Α | HSX | 120 | 1 | 2 | 2 | | 9451 | | RAMY | 05 05 | | | E73 | | 11.1 | | Α | HSX | 220 | 1 | 4 | 2 | | 9451 | 30446 | MWIL | 05 05 | | | E70 | | 11.0 | 5 | (AP) | | | _ | _ | _ | | 9451 | | HOLL | 05 05 | 1440 | S22 | E71 | | 11.1 | | Α | HAX | 170 | 1 | 2 | 3 | | 9451 | | VORO | 05 06 | | | E64 | | 11.0 | | | HAX | 171 | 1 | | 2<br>4 | | | | | | 0/70 | ^ ^ ^ ^ | E64 | nΕ | 11 2 | | | псv | 100 | | | 1. | | 9451<br>9451 | 30446 | TACH<br>MWIL | 05 06<br>05 06 | | | E56 | | 11.2<br>10.9 | 5 | (AP) | HSX | 100 | 1 | 2 | 4 | MAY | NOAA/ | Mt | | 0bserv | ation | | | | | | Corrected | | Long. | | |--------------|--------|--------------|----------------|--------------|----------------------|--------------------|-----|--------|------------|-------------|--------|----------|--------| | USAF | Wilson | | 0200 | Time | | CMP | Max | Mag | Spot | Area | Spot | Extent | | | Group | Group | Sta | Mo Day | | Lat CMD | Mo Day | Н | | Class | (10-6 Hemi) | Count | (Deg) | Qual | | | · | | | | | | | | | | | | | | 9451 | | HOLL | 05 06 | 1440 | S20 E57 | 05 11.0 | | Α | HAX | 70 | 1 | 2 | 3 | | 9451 | | VORO | 05 07 | 0011 | S21 E52 | 05 11.0 | | | HAX | 192 | 1 | | 2 | | 9451 | | LEAR | 05 07 | 0101 | S22 E50 | 05 10.9 | | Α | HSX | 110 | 1 | 2 | 4 | | 9451 | | SVTO | 05 07 | 0548 | S21 E49 | 05 11.0 | | В | CSO | 160 | 2 | 4 | 3 | | 9451 | | KAND | 05 07 | 0900 | S20 E46 | 05 10.9 | | | HS | | 2 | 2 | 3 | | 9451 | | RAMY | 05 07 | 1320 | S21 E43 | 05 10.8 | | В | CSO | 110 | 2 | 2 | 4 | | 9451 | | HOLL | 05 07 | 1450 | S21 E42 | 05 10.8 | _ | Α | HAX | 120 | 3 | 2 | 3 | | 9451 | 30446 | MWIL | 05 07 | 1545 | S22 E43 | 05 11.0 | 5 | (AP) | | 440 | - | -, | - | | 9451 | | LEAR | 05 08 | 0215 | S22 E37 | 05 10.9 | | Α | HAX | 110 | 3 | 3 | 3 | | 9451 | | VORO | 05 08 | 0324 | S21 E36 | 05 10.9 | | _ | HAX | 187 | 3 | - | 2 | | 9451<br>9451 | | SVTO | 05 08<br>05 08 | 0850<br>0955 | S21 E35<br>S20 E33 | 05 11.0<br>05 10.9 | | В | CAO<br>CSO | 130 | 3<br>2 | 5<br>3 | 2<br>2 | | 9451 | | KAND | 05 08 | 1204 | S20 E33 | 05 10.9 | | | HSX | 120 | 2 | 3 | 4 | | 9451 | | RAMY<br>HOLL | 05 08 | 1421 | S20 E32 | 05 10.9 | | A<br>A | HAX | 110 | 5 | 3 | 4 | | 9451 | 30446 | MWIL | 05 08 | 1430 | S21 E31 | 05 10.9 | 5 | (BP) | пил | 110 | , | , | 4 | | 9451 | 30440 | LEAR | 05 08 | 0525 | S21 E30 | 05 10.9 | , | В | cso | 150 | 5 | 5 | 2 | | 9451 | | SVTO | 05 09 | 0534 | S21 E23 | 05 11.0 | | В | CAO | 150 | 3 | 6 | 3 | | 9451 | | TACH | 05 09 | 0641 | S21 E21 | 05 10.9 | | ь | HSX | 150 | 1 | 2 | 3 | | 9451 | | KAND | 05 09 | 1335 | S20 E20 | 05 10.7 | | | CAO | 150 | 5 | 4 | 3 | | 9451 | 30446 | MWIL | 05 09 | 1415 | S21 E17 | 05 10.9 | 5 | (BP) | UNU | | _ | • | • | | 9451 | 30440 | HOLL | 05 09 | 1751 | S20 E17 | 05 11.0 | _ | В | CAO | 110 | 10 | 7 | 3 | | 9451 | | LEAR | 05 10 | 0332 | S21 E10 | 05 10.9 | | В | CAO | 110 | 5 | 4 | 4 | | 9451 | | SVTO | 05 10 | 0537 | S21 E09 | 05 10.9 | | В | CAO | 100 | 4 | 4 | 2 | | 9451 | | KAND | 05 10 | 0605 | S20 E10 | 05 11.0 | | _ | CAO | | 5 | 3 | 3 | | 9451 | | TACH | 05 10 | 0725 | S21 E07 | 05 10.8 | | | HSX | 220 | 1 | 2 | 3 | | 9451 | | RAMY | 05 10 | 1245 | S21 E04 | 05 10.8 | | Α | HSX | 160 | 2 | 2 | 1 | | 9451 | | HOLL | 05 10 | 1350 | S21 E06 | 05 11.0 | | В | CKO | 150 | 8 | 4 | 4 | | 9451 | 30446 | MWIL | 05 10 | 1430 | S21 E04 | 05 10.9 | 5 | (BP) | | | | | | | 9451 | | VORO | 05 10 | 2117 | S21 E00 | 05 10.9 | | | HAX | 196 | 5 | | 2 | | 9451 | | LEAR | 05 11 | 0230 | S22 E01 | 05 11.2 | | В | CSO | 100 | 7 | 3 | 3 | | 9451 | | SVTO | 05 11 | 0520 | S21 W03 | 05 11.0 | | В | DSO | 150 | 5 | 5 | 3 | | 9451 | | KAND | 05 11 | 0645 | S20 W03 | 05 11.0 | | | CSO | | 6 | 4 | 3 | | 9451 | | TACH | 05 11 | 0651 | S21 W03 | 05 11.0 | | | HAI | 302 | 3 | 3 | 3 | | 9451 | | RAMY | 05 11 | 1203 | S21 W07 | 05 11.0 | | В | CSO | 100 | 3 | 4 | 2 | | 9451 | 30446 | MWIL | 05 11 | 1430 | S21 W09 | 05 10.9 | 5 | (BP) | | | | | | | 9451 | | HOLL | 05 11 | 1445 | S22 W08 | 05 11.0 | | В | CKO | 140 | 10 | 5 | 4 | | 9451 | | VORO | 05 11 | 2115 | s21 W13 | 05 10.9 | | | HAX | 224 | 9 | | 2 | | 9451 | | LEAR | 05 12 | 0220 | S21 W15 | 05 10.9 | | В | CSO | 110 | 5 | 4 | 2 | | 9451 | | KAND | 05 12 | 0550 | s20 w17 | 05 10.9 | | | CAO | | 6 | 4 | 4 | | 9451 | | SVTO | 05 12 | 0840 | S21 W18 | 05 11.0 | | В | CSO | 130 | 4 | 4 | 3 | | 9451 | | RAMY | 05 12 | 1340 | S21 W22 | 05 10.9 | | В | CSO | 140 | 3 | 3 | 3 | | 9451 | | HOLL | 05 12 | 1503 | S22 W22 | 05 10.9 | | В | CSO | 170 | 4 | 4 | 1 | | 9451 | | VORO | 05 12 | 2107 | S21 W26 | 05 10.9 | _ | | HAX | 182 | 1 | | 2 | | 9451 | 30446 | MWIL | 05 12 | 2200 | S21 W28 | 05 10.8 | 5 | (AP) | | | _ | _ | _ | | 9451 | | LEAR | 05 13 | 0145 | S21 W29 | 05 10.8 | | A | HSX | 120 | 2 | 2 | 3 | | 9451 | | SVTO | 05 13 | 0515 | S22 W29 | 05 11.0 | | В | DSO | 150 | 8 | 5 | 3 | | 9451 | | TACH | 05 13 | 0519 | S21 W28 | 05 11.1 | | | CAO | 102 | 3 | 3 | 2 | | 9451 | | KAND | 05 13 | 0935 | s20 W31 | 05 11.0 | | _ | CSO | 00 | 5 | 5 | 3 | | 9451 | 70/// | RAMY | 05 13 | 1115 | S22 W32 | 05 11.0 | - | B | DSO | 90 | 4 | 6 | 3 | | 9451 | 30446 | MWIL | 05 13 | 1345 | S21 W34 | 05 11.0 | 5 | (BP) | | 2/5 | 7 | ٠, | 7 | | 9451 | | VORO | 05 13 | 2144 | \$22 W38 | 05 11.0 | | | DAO | 245<br>170 | 3 | 4 | 3 | | 9451 | | LEAR | 05 14 | 0015 | S22 W38<br>S22 W43 | 05 11.1 | | В | DSO | 130 | 6 | 5<br>7 | 2 | | 9451 | | SVTO | 05 14 | 0515 | | 05 10.9 | | В | CSO | 160 | 5<br>5 | | 3<br>3 | | 9451 | | TACH | 05 14<br>05 14 | 0541 | \$22 W42<br>\$22 W43 | 05 11.0<br>05 11.0 | | | DAO<br>CSO | 199 | 5 | 4<br>6 | 3 | | 9451<br>9451 | | KAND<br>RAMY | 05 14 | 0820<br>1210 | S21 W46 | 05 11.0 | | В | DSO | 100 | 5 | 7 | 5 | | 9451 | 30446 | MWIL | 05 14 | 1400 | S21 W48 | 05 10.9 | 5 | (BP) | | 100 | , | , | , | | 9451 | 30446 | HOLL | 05 14 | 1711 | S22 W48 | 05 10.9 | , | B | CAO | 110 | 4 | 7 | 2 | | 9451 | | | 05 14 | | S21 W53 | 05 10.8 | | D | | 281 | 1 | , | 2 | | 9451<br>9451 | | VORO | 05 14 | 2114<br>0138 | S21 W55 | 05 10.8 | | ٨ | HAX<br>HSX | 100 | 1 | 2 | 3 | | 9451<br>9451 | | LEAR<br>TACH | 05 15 | 0532 | S21 W56 | 05 10.8 | | A | HSX | 110 | 1 | 1 | 3 | | 9451 | | SVTO | 05 15 | 0638 | S20 W56 | 05 10.8 | | Λ | HSX | 140 | 1 | 3 | 2 | | 9451 | | KAND | 05 15 | 0740 | S21 W57 | 05 10.9 | | A | HS | 140 | 1 | 2 | 4 | | 9451 | | RAMY | 05 15 | 1235 | S22 W36 | 05 10.9 | | A | HSX | 80 | 1 | 2 | 1 | | 9451 | 30446 | MWIL | 05 15 | 1400 | S21 W62 | 05 10.9 | 5 | (AP) | | 00 | , | <u>د</u> | ' | | 9451<br>9451 | JU440 | HOLL | 05 15 | 1740 | S21 W62 | 05 10.8 | ر | | НАХ | 130 | 1 | 3 | 3 | | 9451<br>9451 | | LEAR | 05 15 | 0005 | S21 W65 | 05 10.7 | | A<br>A | HAX | 100 | 1 | 1 | 3 | | 9451<br>9451 | | VORO | 05 16 | 0030 | S22 W67 | 05 10.8 | | А | HAX | 84 | 1 | ' | 2 | | 9451 | | SVTO | 05 16 | 0800 | \$21 W00 | 05 10.7 | | Α | HSX | 100 | i | 3 | 2 | | /TJ 1 | | 3410 | | | W13 | | | ۸ | | | | | | | | | | | | | | | | | | | | | MAY | NOAA/ | Mt | | 0bserv | | | | | | | Corrected | <b>.</b> . | Long. | | |--------------------------------------|-----------------|--------------|----------------|--------------|--------------------|--------------------|----------|--------------|---------------|---------------------|---------------|--------------|--------| | USAF<br>Group | Wilson<br>Group | Sta | Mo Day | Time<br>(UT) | Lat CMD | CMP<br>Mo Day | Max<br>H | Mag<br>Class | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent (Deg) | Qua | | 9451 | | TACH | 05 16 | 0839 | S19 W74 | 05 10.7 | | | HSX | 140 | 1 | 2 | 3 | | 9451 | | KAND | 05 16 | 0925 | s21 W73 | 05 10.8 | | | HS | | 2 | 5 | 2 | | 9451 | 30446 | MWIL | 05 16 | 1415 | s21 W75 | 05 10.8 | 5 | (AP) | | | | | | | 9451 | | HOLL | 05 16 | 1510 | S18 W78 | 05 10.7 | | A | HAX | 120 | 1 | 3 | 3 | | 9451 | | RAMY | 05 16 | 1930 | S18 W82 | 05 10.6 | | A | HSX | 60 | 1 | 2 | 1 | | 9451 | | VORO | 05 16 | 2324 | s21 W83 | 05 10.6 | | | HAX | 327 | 1 | _ | 2 | | 9451 | | LEAR | 05 17 | 0015 | S20 W80 | 05 10.9 | | A | HAX | 60 | 1 | 1 | 4 | | 9451 | | TACH | 05 17 | 0507 | S19 W82 | 05 10.9 | | | HSX | 60 | 1 | 3 | 4 | | 9451A | | LEAR | 05 07 | 0101 | N17 E56 | 05 11.3 | | A | AXX | 10 | 2 | 2 | 4 | | 9458 | | KAND | 05 14 | 0820 | s12 W37 | 05 11.5 | | | вхо | | 2 | 1 | 3 | | 9458 | | RAMY | 05 14 | 1210 | s11 W39 | 05 11.6 | | В | CSO | 10 | 3 | 1 | 5 | | 9458 | 30453 | MWIL | 05 14 | 1400 | S12 W40 | 05 11.6 | 4 | (B ) | | | | | | | 9458 | | HOLL | 05 14 | 1711 | s12 W42 | 05 11.5 | | В | CSO | 50 | 4 | 3 | 2 | | 9458 | | VORO | 05 14 | 2114 | S12 ₩44 | 05 11.6 | | | HRX | 69 | 3 | | 2 | | 9458 | | LEAR | 05 15 | 0138 | S12 W48 | 05 11.4 | | В | CAO | 40 | 8 | 3 | 3 | | 9458 | | TACH | 05 15 | 0532 | S11 W50 | 05 11.5 | | | CAO | 69 | 5 | 3 | 3 | | 9458 | | SVTO | 05 15 | 0638 | S12 W49 | 05 11.6 | | В | CSO | 60 | 5 | 4 | 2 | | 9458 | | KAND | 05 15 | 0740 | s13 W50 | 05 11.5 | | | DAO | | 6 | 5 | 4 | | 9458 | | RAMY | 05 15 | 1235 | s10 W52 | 05 11.6 | | В | DSO | 70 | 5 | 5 | 1 | | 9458 | 30453 | MWIL | 05 15 | 1400 | S12 W54 | 05 11.5 | 4 | (B) | | , , | | | | | 9458 | | HOLL | 05 15 | 1740 | s13 W58 | 05 11.3 | • | В | вхо | 20 | 6 | 5 | 3 | | 9458 | | LEAR | 05 16 | 0005 | S12 W59 | 05 11.5 | | В | DSO | 30 | 5 | 5 | 3 | | 9458 | | VORO | 05 16 | 0030 | S10 W63 | 05 11.3 | | J | HRX | 68 | 2 | • | 2 | | 9458 | | SVTO | 05 16 | 0800 | S13 W63 | 05 11.6 | | В | DAO | 40 | 5 | 8 | 2 | | 9458 | | | 05 16 | 0839 | S10 W61 | 05 11.8 | | ь | AXX | 10 | 1 | 1 | 3 | | 9458<br>9458 | | TACH | 05 16 | 0925 | \$10 W61 | 05 11.6 | | | CSO | 10 | 5 | . 8 | 2 | | | 30453 | KAND | 05 16 | 1415 | | 05 11.5 | 4 | /DEN | CSU | | , | 0 | 2 | | 9458 | 30423 | MWIL | | | S12 W67 | | 4 | (BF) | BVO | 20 | 4 | 4 | 7 | | 9458 | | HOLL | 05 16 | 1510 | S11 W69 | 05 11.4 | | В | BXO | 20 | 6 | 6 | 3 | | 9458 | | RAMY | 05 16 | 1930 | S09 W69 | 05 11.6 | | В | DSO | 40 | 2 | 3 | 1 | | 9458 | | VORO | 05 16 | 2324 | S12 W71 | 05 11.6 | | _ | HAX | 69 | 1 | , | 2 | | 9458 | | LEAR | 05 17 | 0015 | S12 W71 | 05 11.7 | | В | DAO | 40 | 4 | 6 | 4 | | 9458 | | TACH | 05 17 | 0507 | s10 w75 | 05 11.6 | | | HSX | 40 | 1 | 1 | 4 | | 9458 | | SVTO | 05 17 | 0947 | S11 W77 | 05 11.6 | | Α | HSX | 60 | 1 | 3 | 2 | | 9458 | | KAND | 05 17 | 1045 | s11 w76 | 05 11.7 | | | HA | | 1 | 2 | _ | | 9458<br>9458 | 30453 | HOLL<br>MWIL | 05 17<br>05 17 | 1345<br>1400 | S10 W79<br>S12 W79 | 05 11.6<br>05 11.6 | 4 | A<br>(BF) | HSX | 60 | 1 | 2 | 3 | | 9456 | 30433 | | 05 17 | | N06 E14 | 05 11.5 | • | | DSO | 20 | 2 | 4 | 2 | | | 70/54 | RAMY | | 1203 | | | , | В | | 20 | _ | - | ~ | | 9456 | 30451 | MWIL | 05 11 | 1430 | N06 E14 | 05 12.6 | 4 | (B) | | 70 | _ | - | , | | 9456 | | HOLL | 05 11 | 1445 | N06 E13 | 05 12.6 | | В | CAO | 30 | 5 | 5 | 4 | | 9456 | | VORO | 05 11 | 2115 | N06 E10 | 05 12.6 | | _ | CAI | 51 | 9 | 5 | 2 | | 9456 | | LEAR | 05 12 | 0220 | N07 E08 | 05 12.7 | | В | DAO | 40 | 9 | 6 | 2 | | 9456 | | KAND | 05 12 | 0550 | N06 E06 | 05 12.7 | | | CAO | | 16 | 6 | 4 | | 9456 | | SVTO | 05 12 | 0840 | N06 E04 | 05 12.7 | | В | DAO | 70 | 11 | 6 | 3 | | 9456 | | RAMY | 05 12 | 1340 | N06 E01 | 05 12.6 | | В | DSO | 60 | 8 | 6 | 3 | | 9456 | | HOLL | 05 12 | 1503 | N06 E00 | 05 12.6 | | В | DAO | 110 | 15 | 7 | 1 | | 9456 | | VORO | 05 12 | 2107 | N06 W04 | 05 12.6 | | | DAI | 181 | 5 | 6 | 2 | | 9456 | 30451 | MWIL | 05 12 | 2200 | N06 W04 | 05 12.6 | 4 | (BF) | | | | | | | 9456 | | LEAR | 05 13 | 0145 | N07 W07 | 05 12.5 | | В | DAO | 90 | 12 | 7 | 3 | | 9456 | | SVTO | 05 13 | 0515 | N07 W08 | 05 12.6 | | В | DAO | 60 | 17 | 7 | 3 | | 9456 | | TACH | 05 13 | 0519 | N06 W08 | 05 12.6 | | | CAI | 152 | 6 | 6 | 2 | | 9456 | | KAND | 05 13 | 0935 | N06 W10 | 05 12.6 | | | DAO | | 9 | 8 | 3 | | 9456 | | RAMY | 05 13 | 1115 | NO4 W12 | 05 12.6 | | В | DAO | 40 | 4 | 7 | 3 | | 9456 | 30451 | MWIL | 05 13 | 1345 | N04 W12 | 05 12.7 | 5 | (BF) | | | • | • | • | | 9456 | 20721 | VORO | 05 13 | 2144 | NO6 W12 | 05 12.7 | | (51) | CAI | 122 | 5 | 6 | 3 | | 9456 | | LEAR | 05 13 | 0015 | NO6 W19 | 05 12.5 | | В | DAO | 60 | 10 | 6 | 2 | | 9456<br>9456 | | SVTO | 05 14 | 0515 | NO5 W19 | 05 12.6 | | В | CAO | 70 | 10 | 8 | 3 | | 9456<br>9456 | | | | 0541 | | | | D | CSI | 93 | 7 | 7 | 7 | | | | TACH | 05 14 | | NO6 W24 | 05 12.4 | | | | 73 | | | 3<br>3 | | 9456 | | KAND | 05 14 | 0820 | N06 W21 | 05 12.8 | | _ | CSI | F0 | 12 | 7 | 2 | | 9456 | =0/=: | RAMY | 05 14 | 1210 | N06 W26 | 05 12.6 | | В | DSO | 50 | 6 | 6 | 5 | | 9456 | 30451 | MWIL | 05 14 | 1400 | N06 W26 | 05 12.6 | 4 | (BF) | | | _ | _ | _ | | | | HOLL | 05 14 | 1711 | N07 W28 | 05 12.6 | | В | CSO | 60 | 3 | 6 | 2 | | | | VORO | 05 14 | 2114 | N06 W30 | 05 12.6 | | | CRO | 109 | 3 | 4 | 2 | | 9456 | | LEAR | 05 15 | 0138 | NO7 W34 | 05 12.5 | | В | DSO | 50 | 11 | 6 | 3 | | 9456 | | LLM | VJ 17 | | | | | | | | | | | | 9456<br>9456 | | TACH | 05 15 | 0532 | | 05 12.6 | | | CSI | 58 | 4 | 6 | 3 | | 9456<br>9456<br>9456<br>9456<br>9456 | | | | 0532<br>0638 | NO7 W35<br>NO7 W35 | 05 12.6<br>05 12.6 | | В | CSI<br>CSO | 58<br>40 | 4<br>5 | 6<br>6 | 3<br>2 | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0bserv | ation<br>Time | | CMP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------------|---------------|--------------------|--------------------|-----|--------|------------|-------------------|----------|-----------------|--------| | Group | Group | Sta | Mo Day | | Lat CMD | Mo Day | Н | _ | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9456 | | RAMY | 05 15 | 1235 | N09 W39 | 05 12.6 | | В | DSO | 50 | 10 | 6 | 1 | | 9456 | 30451 | MWIL | 05 15 | 1400 | N06 W39 | 05 12.7 | 4 | (B) | | F.0 | • | • | - | | 9456 | | HOLL | 05 15 | 1740 | NO5 W42 | 05 12.6 | | В | DAO | 50 | 8 | 8 | 3 | | 9456 | | LEAR | 05 16 | 0005 | N06 W46 | 05 12.6 | | В | DAO | 60 | 5 | 7<br>7 | 3 | | 9456 | | VORO | 05 16<br>05 16 | 0030<br>0800 | NO7 W47<br>NO6 W51 | 05 12.5<br>05 12.5 | | В | CAO | 124<br>80 | 2<br>6 | 7 | 2<br>2 | | 9456<br>9456 | | SVTO<br>TACH | 05 16 | 0839 | NO8 W51 | 05 12.5 | | ь | DAO<br>DSO | 160 | 2 | 7 | 3 | | 9456 | | KAND | 05 16 | 0925 | NO6 W51 | 05 12.6 | | | DSO | 100 | 4 | 9 | 2 | | 9456 | 30451 | MWIL | 05 16 | 1415 | NO6 W53 | 05 12.6 | 5 | (B) | 500 | | | • | _ | | 9456 | | HOLL | 05 16 | 1510 | N06 W57 | 05 12.4 | - | B | DAO | 120 | 3 | 9 | 3 | | 9456 | | RAMY | 05 16 | 1930 | N09 W57 | 05 12.5 | | В | DSO | 100 | 2 | 8 | 1 | | 9456 | | VORO | 05 16 | 2324 | N05 W60 | 05 12.5 | | | DAO | 140 | 2 | 9 | 2 | | 9456 | | LEAR | 05 17 | 0015 | N07 W60 | 05 12.5 | | В | DAO | 50 | 8 | 9 | 4 | | 9456 | | TACH | 05 17 | 0507 | N08 W63 | 05 12.5 | | | DSO | 66 | 3 | 8 | 4 | | 9456 | | SVTO | 05 17 | 0947 | N07 W66 | 05 12.5 | | В | DAO | 50 | 3 | 9 | 2 | | 9456 | | KAND | 05 17 | 1045 | N07 W68 | 05 12.3 | | _ | ES0 | | 3 | 11 | 4 | | 9456 | 70/54 | HOLL | 05 17 | 1345 | NO8 W69 | 05 12.4 | , | В | DAO | 120 | 3 | 10 | 3 | | 9456 | 30451 | MWIL | 05 17 | 1400 | NO6 W67 | 05 12.6 | 4 | (B) | DVO | | 7 | 7 | 3 | | 9456 | | KAND | 05 18 | 0640 | N06 W75 | 05 12.7 | | | вхо | | ′ | , | 3 | | 9452 | | LEAR | 05 07 | 0101 | S09 E78 | 05 12.9 | | A | AXX | 10 | 1 | | 4 | | 9452 | | SVTO | 05 07 | 0548 | S08 E78 | 05 13.1 | | Α | HSX | 30 | 1 | 1 | 3 | | 9452 | | KAND | 05 07 | 0900 | S09 E74 | 05 12.9<br>05 12.9 | | | AX | 20 | 1<br>1 | 1<br>1 | 3<br>4 | | 9452<br>9452 | | RAMY | 05 07<br>05 07 | 1320<br>1450 | S09 E72<br>S09 E72 | 05 12.9 | | A<br>A | HSX<br>AXX | 30 | 1 | 1 | 3 | | 9452<br>9452 | 30447 | HOLL<br>MWIL | 05 07 | 1545 | S10 E73 | 05 13.0 | 6 | (AP) | MAA | 30 | 1 | 1 | 3 | | 9452 | 30441 | LEAR | 05 08 | 0215 | S10 E65 | 05 13.0 | Ü | A | AXX | 10 | 1 | 1 | 3 | | 9452 | | VORO | 05 08 | 0324 | S09 E65 | 05 13.0 | | • | HAX | 37 | i | • | 2 | | 9452 | | SVTO | 05 08 | 0850 | S08 E62 | 05 13.0 | | Α | AXX | 20 | 1 | 1 | 2 | | 9452 | | KAND | 05 08 | 0955 | S08 E62 | 05 13.1 | | | AX | | 1 | 1 | 2 | | 9452 | | RAMY | 05 08 | 1204 | S09 E60 | 05 13.0 | | Α | HSX | 20 | 1 | 1 | 4 | | 9452 | | HOLL | 05 08 | 1421 | S09 E59 | 05 13.0 | | Α | AXX | 20 | 1 | 1 | 4 | | 9452 | 30447 | MWIL | 05 08 | 1430 | S09 E59 | 05 13.0 | 4 | (AP) | | | _ | _ | _ | | 9452 | | LEAR | 05 09 | 0525 | S09 E51 | 05 13.0 | | A | AXX | 10 | 2 | 1 | 2 | | 9452 | | SVTO | 05 09 | 0534 | S09 E51 | 05 13.0 | | Α | HSX | 30 | 1 | 1 | 3<br>3 | | 9452<br>9452 | | TACH | 05 09<br>05 09 | 0641<br>1335 | S09 E51<br>S08 E47 | 05 13.1<br>05 13.1 | | | AXX<br>HS | 5 | 1<br>1 | 1 | 3 | | 9452 | 30447 | KAND<br>MWIL | 05 09 | 1415 | S10 E46 | 05 13.1 | 4 | (AP) | ns | | • | • | 3 | | 9452 | 30441 | HOLL | 05 09 | 1751 | S08 E43 | 05 13.0 | - | A | AXX | 10 | 1 | 1 | 3 | | 9452 | | LEAR | 05 10 | 0332 | S09 E38 | 05 13.0 | | A | HRX | | 1 | • | 4 | | 9452 | | SVTO | 05 10 | 0537 | S09 E37 | 05 13.0 | | Α | HRX | 10 | 1 | 1 | 2 | | 9452 | | KAND | 05 10 | 0605 | S09 E38 | 05 13.1 | | | AX | | 1 | 1 | 3 | | 9452 | | TACH | 05 10 | 0725 | S10 E36 | 05 13.0 | | | AXX | 5 | 1 | 1 | 3 | | 9452 | | RAMY | 05 10 | 1245 | S10 E33 | 05 13.0 | | Α | AXX | 10 | 1 | | 1 | | 9452 | | HOLL | 05 10 | 1350 | S09 E33 | 05 13.0 | | В | CAO | 30 | 4 | 5 | 4 | | 9452 | 30447 | MWIL | 05 10 | 1430 | S10 E32 | 05 13.0 | 4 | (AP) | | | | | _ | | 9452 | | VORO | 05 10 | 2117 | S10 E29<br>S09 E26 | 05 13.1 | | | AXX | 14 | 1<br>1 | | 2<br>3 | | 9452<br>9452 | | LEAR<br>SVTO | 05 11<br>05 11 | 0230<br>0520 | S09 E26 | 05 13.0<br>05 13.0 | | A<br>A | AXX<br>AXX | 10 | 1 | | 3 | | 9452 | | KAND | 05 11 | 0645 | S09 E24 | 05 13.0 | | A | AXX | 10 | 1 | | 3 | | 9452 | | TACH | 05 11 | 0651 | S10 E24 | 05 13.1 | | | AXX | 2 | i | 1 | 3 | | 9452 | | RAMY | 05 11 | 1203 | \$10 E20 | 05 13.0 | | Α | AXX | 10 | <u>i</u> | | 2 | | 9452 | 30447 | MWIL | 05 11 | 1430 | S10 E19 | 05 13.0 | 4 | (AP) | | | | | | | 9452 | | HOLL | 05 11 | 1445 | S09 E19 | 05 13.0 | | A | AXX | 10 | 1 | 1 | 4 | | 9452 | | LEAR | 05 12 | 0220 | S09 E12 | 05 13.0 | | Α | AXX | 10 | 1 | 1 | 2 | | 9452 | | KAND | 05 12 | 0550 | S09 E11 | 05 13.1 | | | AX | | 1 | | 4 | | 9452 | | SVTO | 05 12 | 0840 | S10 E11 | 05 13.2 | | В | вхо | | 2 | 6 | 3 | | 9452 | | LEAR | 05 15 | 0138 | S13 W25 | 05 13.2 | | В | BXO | 50 | 3 | 4 | 3 | | 9452 | | SVTO | 05 15 | 0638 | s12 w27 | 05 13.2 | | В | вхо | 10 | 2 | 4 | 2 | | 9455 | | RAMY | 05 10 | 1245 | S17 E36 | 05 13.3 | | В | вхо | 20 | 2 | 3 | 1 | | 9455 | | HOLL | 05 10 | 1350 | S17 E36 | 05 13.3 | | В | CAO | 20 | 3 | 3 | 4 | | 9455 | 30449 | MWIL | 05 10 | 1430 | S17 E35 | 05 13.3 | 4 | (B ) | | - | _ | _ | _ | | 9455 | | VORO | 05 10 | 2117 | S18 E31 | 05 13.2 | | - | HRX | 59<br>70 | 2 | 1 | 2 | | 9455 | | LEAR | 05 11 | 0230<br>0520 | S17 E28 | 05 13.2<br>05 13.3 | | В | DAO | 30<br>110 | 12<br>9 | 3<br>5 | 3<br>3 | | 9455<br>9455 | | SVTO<br>KAND | 05 11<br>05 11 | 0645 | S17 E27<br>S17 E28 | 05 13.3 | | В | DAO<br>DSO | 110 | 6 | 5 | 3 | | 9455 | | TACH | 05 11 | 0651 | S17 E20 | 05 13.4 | | | HAX | 260 | 4 | 3 | 3 | | 9455 | | RAMY | 05 11 | 1203 | S18 E20 | 05 13.0 | | В | DSO | 120 | 5 | 9 | 2 | | /4// | | INTO I | <b>45</b> 11 | . 200 | J.O LLO | -5 .5.0 | | | 200 | | - | • | - | MAY | | 2.4 | | | | | | | <del> </del> | | | ****** | 0 | | 1 | | |----------------|--------------|----------------------|----------------------|----------------|-------------|------------|--------------|--------------|-----|-----------|------------|-------------------|--------|-----------------|--------| | NOAA/<br>USAF | Mt<br>Wilson | | Obse | vation<br>Time | | | CMP | | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | | Group | Group | Sta | Mo Da | ay (UT) | Lat | CMD | Mo D | | Н | | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9455 | 30449 | MWIL | 05 1 | 1 1430 | s18 | E22 | 05 1 | 3.3 | 5 | (D ) | | | | | | | 9455 | | HOLL | 05 1 | | s18 | E22 | 05 1 | 3.3 | | В | DSI | 140 | 18 | 6 | 4 | | 9455 | | VORO | 05 1 | | s18 | E17 | 05 1 | 3.2 | | | DAI | 227 | 12 | 8 | 2 | | 9455 | | LEAR | 05 12 | 0220 | s16 | E15 | 05 1 | 3.2 | | BG | DAO | 120 | 25 | 9 | 2 | | 9455 | | KAND | 05 12 | | | E14 | 05 1 | 3.3 | | | DAI | | 27 | 10 | 4 | | 9455 | | SVTO | 05 12 | | | E11 | 05 1 | 3.2 | | В | DAO | 200 | 23 | 10 | 3 | | 9455 | | RAMY | 05 12 | 2 1340 | s18 | E08 | 05 1 | 3.2 | | В | DAO | 220 | 18 | 10 | 3 | | 9455 | | HOLL | 05 17 | | s17 | E07 | 05 1 | 3.1 | | В | EAO | 250 | 26 | 11 | 1 | | 9455 | | VORO | 05 17 | 2 2107 | s18 | E04 | 05 1 | 3.2 | | | DAI | 440 | 14 | 10 | 2 | | 9455 | 30449 | MWIL | 05 17 | | s18 | E04 | 05 1 | 3.2 | 5 | (BG) | | | | | | | 9455 | | LEAR | 05 13 | 0145 | s18 | E01 | 05 1 | 3.1 | | BG | EAI | 180 | 25 | 12 | 3 | | 9455 | | SVTO | 05 13 | | s18 | W01 | 05 1 | 3.1 | | BG | EAI | 240 | 24 | 12 | 3 | | 9455 | | TACH | 05 13 | 3 0519 | | W03 | 05 1 | | | | DAI | 285 | 9 | 9 | 2 | | 9455 | | KAND | 05 13 | 3 0935 | s17 | W01 | 05 1 | 3.3 | | | EAI | | 12 | 11 | 3 | | 9455 | | RAMY | 05 13 | 3 1115 | s18 | W04 | 05 1 | 3.2 | | В | ESI | 70 | 18 | 12 | 3 | | 9455 | 30449 | MWIL | 05 13 | 3 1345 | s17 | W05 | 05 1 | 3.2 | 5 | (BG) | | | | | | | 9455 | | VORO | 05 13 | | s18 | W10 | 05 1 | 3.1 | | | DRI | 308 | 8 | 11 | 3 | | 9455 | | LEAR | 05 14 | 4 0015 | s18 | W12 | 05 1 | 3.1 | | BG | EAO | 160 | 21 | 11 | 2 | | 9455 | | SVTO | 05 14 | 4 0515 | s16 | W14 | 05 1 | 3.1 | | BG | FAI | 190 | 30 | 16 | 3 | | 9455 | | TACH | 05 14 | 4 0541 | s17 | W16 | 05 1 | 3.0 | | | DAI | 300 | 14 | 12 | 3 | | 9455 | | KAND | 05 14 | 4 0820 | s18 | W15 | 05 1 | 3.2 | | | EAI | | 40 | 15 | 3 | | 9455 | | RAMY | 05 14 | 4 1210 | s17 | W18 | 05 1 | 3.1 | | BG | EAI | 150 | 30 | 15 | 5 | | 9455 | 30449 | MWIL | 05 14 | 4 1400 | s17 | W18 | 05 1 | 3.2 | 5 | (BG) | | | | | | | 9455 | | HOLL | 05 1 | | | W21 | 05 1 | | | BG | FAI | 240 | 34 | 18 | 2 | | 9455 | | VORO | 05 1 | | s19 | W24 | 05 1 | 3.0 | | | EAI | 490 | 11 | 14 | 2 | | 9455 | | LEAR | 05 1 | | | W27 | 05 1 | | | BG | FAI | 200 | 30 | 16 | 3 | | 9455 | | TACH | 05 1 | | | W30 | 05 1 | | | | DSI | 380 | 9 | 12 | 3 | | 9455 | | SVTO | 05 1 | 5 0638 | \$18 | W28 | 05 1 | | | BG | FAI | 200 | 13 | 16 | 2 | | 9455 | | KAND | 05 1 | | | W29 | 05 1 | 3.1 | | | FSI | | 22 | 16 | 4 | | 9455 | | RAMY | 05 1 | 5 1235 | S16 | W32 | 05 1 | 3.1 | | BG | EAO | 140 | 15 | 15 | 1 | | 9455 | 30449 | MWIL | 05 1 | | s17 | W33 | 05 1 | 3.1 | 5 | (BG) | | | | | | | 9455 | | HOLL | 05 1 | 5 1740 | S18 | W35 | 05 1 | 3.1 | | BG | FAI | 170 | 22 | 17 | 3 | | 9455 | | LEAR | 05 1 | 6 0005 | s18 | W38 | 05 1 | 3.1 | | BG | FAI | 130 | 20 | 17 | 3 | | 9455 | | VORO | 05 1 | 6 0030 | | W39 | 05 1 | | | | EAI | 438 | 12 | 15 | 2 | | 9455 | | SVTO | 05 1 | | s18 | W44 | 05 1 | | | В | FAI | 160 | 25 | 17 | 2 | | 9455 | | TACH | 05 1 | | | W44 | 05 1 | | | | DAI | 438 | 8 | 16 | 3 | | 9455 | | KAND | 05 1 | 6 0925 | s18 | W44 | 05 1 | 3.0 | | | FAO | | 16 | 16 | 2 | | 9455 | 30449 | MWIL | 05 1 | | | W47 | 05 1 | 3.0 | 4 | (BG) | | | | | | | 9455 | | HOLL | 05 1 | 6 1510 | s16 | W48 | 05 1 | 3.0 | | BG | FAI | 130 | 38 | 16 | 3 | | 9455 | | RAMY | 05 1 | 6 1930 | <b>S16</b> | W50 | 05 1 | | | В | FS0 | 180 | 13 | 16 | 1 | | 9455 | | VORO | 05 1 | | s19 | W52 | 05 1 | | | | EAI | 701 | 10 | 16 | 2 | | 9455 | | LEAR | 05 1 | | | W52 | 05 1 | | | BG | FAI | 180 | 37 | 16 | 4 | | 9455 | | TACH | 05 1 | 7 0507 | s16 | W56 | 05 1 | 3.0 | | | DAI | 277 | 17 | 25 | 4 | | 9455 | | SVTO | 05 1 | 7 0947 | s18 | W56 | 05 1 | 3.1 | | В | FAO | 240 | 14 | 18 | 2 | | 9455 | | KAND | | | <b>\$17</b> | W59 | 05 1 | | | | FAI | | 16 | 18 | 4 | | 9455 | | HOLL | 05 1 | | | W66 | 05 1 | | | BG | FAI | 280 | 18 | 18 | 3 | | 9455 | 30449 | MWIL | 05 1 | | | W60 | 05 1 | 3.0 | 5 | (BG) | | | | | | | 9455 | | VORO | 05 1 | | | W71 | 05 1 | 2.7 | | • | DAI | 704 | 9 | 7 | 2 | | 9455 | | KAND | 05 1 | | s18 | W70 | 05 1 | 2.9 | | | FSI | | 21 | 20 | 3 | | 9455 | | SVTO | 05 1 | | | W72 | 05 1 | 2.9 | | В | EAI | 290 | 14 | 12 | 2 | | 9455 | | RAMY | 05 1 | | | W74 | 05 1 | | | В | ES0 | 140 | 6 | 12 | 2 | | 9455 | | HOLL | 05 1 | | | W76 | 05 1 | 2.8 | | В | FAO | 200 | 22 | 21 | 3 | | 9455 | 30449 | MWIL | 05 1 | | | W75 | 05 1 | | 4 | (B) | - | | * | | | | 9455 | | VORO | 05 1 | | | W77 | 05 1 | | - | , | HAX | 343 | 5 | | 2 | | 9455 | | SVTO | 05 1 | | | W84 | 05 1 | | | В | CSO | 60 | 2 | 6 | 2 | | 9455 | | KAND | 05 1 | | | W83 | 05 1 | | | = | HA | | 1 | 2 | 2 | | 9455 | 30449 | MWIL | 05 1 | | | W87 | 05 1 | | 4 | AF | | | | | | | 9455A<br>9455A | 30454 | LEAR<br>MWIL | 05 1<br>05 1 | | | E15<br>W18 | 05 1<br>05 1 | | 4 | B<br>(B ) | вхо | | 2 | 1 | 3 | | | JU4J4 | | | | | | | | 7 | | BV- | 40 | 2 | 3 | , | | 9459 | | LEAR | 05 1 | | | E04 | 05 1 | | | В | BXO | 10 | 2 | 2 | 2 | | 9459 | | SVTO | 05 1 | | | E01 | 05 1 | | | В | CRO | 20 | 2 | 3 | 3 | | 9459 | | KAND | 05 1 | | | E00 | 05 1 | | | | BXO | | 3 | 1 | 3 | | 9459 | 30455 | MWIL | 05 1 | | | E03 | 05 1 | | 4 | (BF) | B)/- | 40 | _ | - | - | | | | LEAR | 05 1 | | | W12 | 05 1 | | | В | вхо | 10 | 2 | 3 | 3<br>3 | | 9459 | | | | | มวว | LITO | D5 1 | 13.8 | | | AX | | 1 | | 4 | | 9459<br>9459 | | KAND | 05 1 | | | W19 | | | | - | | 20 | | 7 | 2 | | 9459 | | KAND<br>RAMY<br>HOLL | 05 1<br>05 1<br>05 1 | 8 1340 | N27 | W55<br>W55 | 05 1<br>05 1 | 14.3 | | B<br>B | CSO<br>BXO | 20<br>10 | 2<br>2 | 3<br>3 | 2 | MAY | USAF Wilson Time Chap Mo Day Chap Mo Day | NOAA/ | Mt | | 0bserv | | | | | | | | | Corrected | | Long. | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|------|--------|--------------|-----|-----|----|------|----------|--------------|---------------|---------------------|---------------|--------------|------| | 9459 30462 Mull 05 18 1400 N27 W55 05 14.3 4 (BP) 90457 SVTD 05 13 0915 S19 E13 05 14.2 A AXX 2 2 2 3 3 457 30452 Mull 05 13 1345 S18 E08 05 14.2 A AXX 1 1 3 5 945 519 457 30452 Mull 05 13 1345 S18 E08 05 14.2 A AXX 1 1 3 5 945 79457 RAMY 05 14 1210 S21 W51 05 14.2 A AXX 1 1 1 5 9 9457 30452 Mull 05 14 1210 S21 W51 05 14.4 A A BSX 10 1 1 1 5 9 9457 30452 Mull 05 14 1210 S21 W51 05 14.4 A A BSX 10 1 1 1 5 9 9457 30452 Mull 05 14 1210 S21 W51 05 14.4 A A AXX 10 1 1 1 5 9 9457 30452 Mull 05 16 14 1210 S21 W51 05 14.4 A A AXX 10 1 1 1 5 9 9457 30452 Mull 05 10 10 8332 W13 E79 05 16.1 A B B DAO 120 2 2 4 2 2 4 2 4 2 4 1 4 1 1 1 1 1 1 1 1 | USAF<br>Group | Wilson<br>Group | Sta | Mo Day | Time<br>(UT) | Lat | CMD | | | Max<br>H | Mag<br>Class | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent (Deg) | Qual | | 9457 | | | MUTI | 05 18 | 1400 | N27 | W55 | 05 | 14.3 | 4 | (RP) | | | | | | | 9457 3052 Mult 0 51 3 0955 S19 E11 05 14.2 4 CAP | | 30402 | | | | | | | | • | | | | | | _ | | 9457 30452 MILL 05 13, 1345 518 508 05 14.2 4 (AP) AX | | | | | | | | | | | A | | | 2 | | | | 9457 | | 30452 | | | | | | | | 4 | (AP) | AX | | 2 | 2 | 3 | | 9457 30452 MILL 05 14 1711 821 W05 05 14, 13 8 A A A A A A A A A | | 30432 | | | | | | | | • | (/ / | AX | | 1 | | | | 9454 | | | | | | | | | | _ | | HSX | 10 | 1 | 1 | 5 | | 9454 | | 30452 | | | | | | | | 3 | | AVV | 10 | 1 | 1 | 2 | | 945.4 SYTO 05 10 0537 N13 E78 05 16.1 B DAO 120 2 4 2 2 4 9 9 9 9 9 9 1 2 3 9 9 9 9 1 2 9 9 9 9 9 9 1 2 3 9 9 9 9 9 9 9 9 9 9 1 2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9457 | | HULL | 05 14 | 1711 | 321 | WUD | 05 | 14.3 | | A | AVV | 10 | | 1 | 2 | | 9454 | | | | | | | | | | | | | | | | 4 | | 9454 | | | | | | | | | | | В | | 120 | | | | | 9454 | | | | | | | | | | | | | 100 | | | | | 9454 9454 9450 9451 9451 9451 9451 9451 9451 9451 9451 | | | | | | | | | | | Α | | | | | | | 9454 | | | | | | N15 | E79 | | | | | | 300 | 8 | 13 | 4 | | 9454 | | 30450 | | | | | | | | 5 | (B) | | | _ | _ | _ | | 9454 | | | | | | | | | | | _ | | | | | | | 9454 | | | | | | | | | | | | | | | | 3 | | 9454 9454 9454 9454 9454 9454 9454 9454 | | | | | | | | | | | ь | | 520 | | | 3 | | 9454 | | | | | | | | | | | В | | 440 | | | | | 9454 | | 30450 | MWIL | 05 11 | | | | | | 5 | (B) | | | | | | | 9454 | | | | | | | | | | | BG | | | | | 4 | | 9454 | | | | | | | | | | | D.C. | | | | | 2 | | 9454 | | | | | | | | | | | BG | | 290 | | | 4 | | 9454 RAMY 05 12 1340 M12 E51 05 16.4 BG EAO 370 11 11 31 9454 VORD 05 12 2107 N13 E47 05 16.4 BG EAO 573 7 10 2 9454 30450 MILL 05 12 105 N12 E51 05 16.5 BG EXI 500 23 11 1 1 9454 VORD 05 12 2107 N13 E47 05 16.4 BB EAO 380 29 12 3 9454 STO 05 13 0515 N13 E44 05 16.4 BB EAO 380 29 12 3 9454 STO 05 13 0515 N13 E44 05 16.4 BB EAO 380 29 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 380 29 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E42 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E44 05 16.4 BB EAO 9 12 3 9454 STO 05 13 0515 N13 E44 05 16.4 BB EAO 10 10 12 3 9454 STO 05 14 0515 N13 E31 05 16.4 BB EAO 310 20 11 2 3 9454 STO 05 14 0515 N13 E31 05 16.3 BB EAO 310 20 11 2 9454 STO 05 14 0515 N13 E31 05 16.3 BB EAO 310 20 11 2 9454 STO 05 14 0515 N13 E31 05 16.3 BB EAO 310 20 11 2 9454 STO 05 14 0515 N13 E27 05 16.2 BB EAO 340 16 14 3 3 9454 STO 05 14 0515 N13 E27 05 16.4 BB EAO 310 21 13 5 9454 STO 05 14 0515 N13 E27 05 16.4 BB EAO 310 21 13 5 9454 STO 05 14 171 E22 05 16.4 BB EAO 310 21 13 5 9454 STO 05 14 171 E22 05 16.4 BB EAO 310 21 13 5 9454 STO 05 14 171 N12 E22 05 16.4 BB EAO 310 21 13 5 9454 STO 05 15 0532 N12 E17 05 16.3 BB EAO 320 16 14 14 400 N12 E24 05 16.4 BB EAO 320 16 14 14 400 N12 E44 05 16.3 BB EAO 320 16 14 9454 STO 05 15 0532 N12 E14 05 16.3 BB EAO 320 16 14 9454 STO 05 15 0532 N12 E14 05 16.3 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 16 14 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 26 14 2 2 9454 STO 05 16 0530 N13 E11 05 16.4 BB EAO 320 26 14 2 2 9454 STO 05 16 0530 N13 E00 05 16.4 BB EAO 331 371 15 9 4 4954 STO 05 17 0507 N13 W12 | | | | | | | | | | | BG | | 490 | | | 3 | | 9454 | | | | | | | | | | | | | | | | 3 | | 9454 SVT0 05 12 2200 M13 E46 05 16.4 BG EAU 380 29 12 3 3 9454 SVT0 05 13 0515 M13 E44 05 16.4 BG EAU 400 25 13 3 9454 SVT0 05 13 0515 M13 E44 05 16.4 BG EAU 400 25 13 3 9454 SVT0 05 13 0515 M13 E46 05 16.4 BG EAU 400 25 13 3 9454 SVT0 05 13 0515 M13 E46 05 16.4 EAO 9 12 3 9454 SVT0 05 13 1115 M12 E39 05 16.4 BG EAU 400 10 12 3 9454 SVT0 05 13 1115 M12 E39 05 16.4 BG EAU 400 10 12 3 9454 SVT0 05 13 1115 M12 E39 05 16.4 BG EAU 400 10 12 3 9454 SVT0 05 14 0820 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 13 1345 M13 E37 05 16.4 SV EVEN EAU 10 15 14 14 13 E37 05 16.2 SV EVEN EAU 10 15 14 14 13 E27 05 16.2 SV EVEN EAU 10 16 14 3 9454 SV EVEN EAU 10 15 14 1400 M12 E27 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E27 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 14 1400 M12 E24 05 16.4 SV EVEN EAU 10 15 15 15 15 15 15 15 15 15 15 15 15 15 | 9454 | | | | | | | | | | BG | | | | | | | 9454 | | | | | | | | | | _ | | DAI | 573 | 7 | 10 | 2 | | 9454 SVTO 05 13 0515 N13 E42 05 16.4 BG EAI 400 25 13 3 9 9 9 9 9 9 14 2 9 9 9 9 14 1 1 | | 30450 | | | | | | | | 5 | | EAO | 780 | 20 | 12 | 7 | | 9454 | | | | | | | | | | | | | | | | 3 | | 9454 RAND 05 13 0935 N14 E40 05 16.4 BG EAO 00 10 12 3 9454 8APY 05 13 1115 N12 E39 05 16.4 BG EAO 400 10 12 3 9454 30450 MWIL 05 13 1345 N13 E37 05 16.4 5 (B ) 9454 VORO 05 13 2144 N13 E33 05 16.4 DAI 585 7 11 3 9454 LEAR 05 14 0015 N13 E37 05 16.3 BG EAO 310 20 11 2 9454 SVTO 05 14 0515 N12 E27 05 16.2 BG EAO 310 20 11 2 9454 TACH 05 14 0541 N13 E26 05 16.2 DAI 595 14 11 3 9454 RANY 05 14 1210 N11 E25 05 16.4 BG EAO 310 20 13 3 9454 RANY 05 14 1210 N11 E25 05 16.4 BG EAO 310 21 13 5 9454 HOLL 05 14 1711 N12 E22 05 16.4 BG EAO 310 21 13 5 9454 HOLL 05 14 1711 N12 E22 05 16.4 BG EAO 310 21 13 5 9454 LEAR 05 14 2114 N13 E21 05 16.5 DAI 538 8 10 2 94554 TACH 05 15 0532 N12 E17 05 16.3 BG EAO 250 29 14 2 94554 SVTO 05 15 0532 N12 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1235 N13 E11 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1235 N13 E11 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 2 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 3 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 3 94554 RANY 05 15 1740 N13 E14 05 16.3 BG EAO 320 16 14 2 3 94554 RANY 05 16 0800 N14 E01 05 16.4 BG EAO 320 16 14 2 3 94554 RANY 05 16 0800 N14 E01 05 16.4 BG EAO 320 26 14 2 3 94554 RANY 05 16 0800 N14 E01 05 16.4 BG EAO 320 26 14 2 3 94554 RANY 05 16 1740 N13 E00 05 16.4 BG EAO 320 26 14 2 3 94554 RANY 05 16 15 10 N14 W06 05 16.3 BG EAO 320 26 14 2 3 94554 RANY 05 16 15 10 N14 W06 05 16.3 BG EAO 320 20 20 32 3 2 3 3 3 3 3 3 3 3 3 3 3 | | | | | | | | | | | | | | | | 2 | | 9454 30450 MILL 05 13 1345 N13 E37 05 16.4 5 (B ) 9454 VORO 05 13 2144 N13 E33 05 16.4 5 (B ) 9454 LEAR 05 14 0015 N13 E31 05 16.3 BG EAO 310 20 11 2 9454 SVTO 05 14 0515 N12 E27 05 16.2 BG EKO 340 16 14 3 9454 TACH 05 14 0541 N13 E26 05 16.2 DAI 595 14 11 3 9454 KAND 05 14 0820 N13 E26 05 16.2 DAI 595 14 11 3 9454 RAMY 05 14 1210 N11 E25 05 16.4 BG EAO 20 13 3 9454 RAMY 05 14 1210 N11 E25 05 16.4 BG EAO 310 21 13 5 9454 VORO 05 14 2114 N13 E21 05 16.4 BG EAI 330 29 14 2 9454 VORO 05 14 2114 N13 E21 05 16.5 DAI 538 8 10 2 9454 SVTO 05 15 0332 N12 E14 05 16.3 BG EAO 250 29 14 3 9454 SAND 05 15 0732 N12 E14 05 16.3 BG EAO 320 16 14 2 9454 SAND 05 15 0732 N13 E11 05 16.4 EAO 11 1 1 1 3 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 330 20 16 14 2 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 330 20 16 14 2 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 330 20 16 14 2 9454 RAMY 05 16 0839 N13 E14 05 16.3 BG EAI 330 20 16 14 2 9454 RAMY 05 16 0839 N13 E14 05 16.4 EAO 320 16 14 2 9454 RAMO 05 15 0740 N13 E14 05 16.3 BG EAI 330 20 16 14 2 9454 RAMO 05 16 0839 N13 E11 05 16.4 EAO 320 16 14 2 9454 SVTO 05 16 0839 N13 E10 05 16.4 EAO 320 16 14 2 9454 VORO 05 16 0839 N13 E00 05 16.4 EAO 320 26 14 2 9454 SVTO 05 16 0839 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMD 05 16 0839 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMY 05 16 1839 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 354 4 10 2 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 351 371 15 9 4 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 05 16 1830 N13 E00 05 16.4 EAI 331 7 10 3 9454 RAMY 0 | 9454 | | KAND | | | | | 05 | 16.4 | | | | | | | 3 | | 9454 | | 70/50 | | | | | | | | _ | | | 400 | 10 | 12 | 3 | | 9454 | | 30450 | | | | | | | | > | (R ) | | 5.25 | 7 | 11 | 7 | | 9454 | | | | | | | | | | | BG | | | | | 2 | | 9454 | | | | | | | | | | | | | | | | 3 | | 9454 30450 MILL 05 14 1210 N11 E25 05 16.4 BG EA0 310 21 13 5 9454 30450 MILL 05 14 1400 N12 E24 05 16.4 5 (B ) 9454 HOLL 05 14 2114 N13 E21 05 16.5 DAI 538 8 10 2 9454 VORO 05 14 2114 N13 E21 05 16.5 DAI 538 8 10 2 9454 LEAR 05 15 0138 N12 E17 05 16.3 BG EA0 250 29 14 3 9454 SVTO 05 15 0638 N12 E14 05 16.3 BG EA0 320 16 14 2 9454 KAND 05 15 0740 N13 E14 05 16.3 BG EA0 320 16 14 2 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EA0 320 16 14 2 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 BHOLL 05 15 1740 N11 E07 05 16.3 BG EAI 230 18 13 1 9454 SVTO 05 15 13 135 N13 E11 05 16.4 EAO 11 13 4 9454 SVTO 05 15 13 1400 N13 E11 05 16.4 EAO 11 13 4 9454 SVTO 05 15 1400 N13 E11 05 16.4 5 (B ) 9454 HOLL 05 15 1740 N11 E07 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0030 N12 E04 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0809 N13 E00 05 16.4 BG EAI 230 18 12 3 9454 KAND 05 16 0825 N13 E00 05 16.4 BG EAI 230 18 12 3 9454 SVTO 05 16 1415 N12 W02 05 16.4 BG EAI 230 18 12 3 9454 SVTO 05 16 16 1510 N14 W04 05 16.3 BG EAI 230 18 12 3 9454 SVTO 05 16 1415 N12 W02 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 1415 N12 W02 05 16.4 BG EAI 230 13 17 10 2 9454 SVTO 05 16 1415 N12 W02 05 16.4 BG EAI 331 7 10 2 9454 SVTO 05 16 1415 N14 W04 05 16.3 BG EAI 331 7 10 2 9454 SVTO 05 16 1415 N14 W04 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 16 1415 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 16 17 0967 N13 W08 05 16.4 DAI 331 77 10 2 9454 SVTO 05 16 17 0967 N13 W08 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 17 0967 N13 W12 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 17 0967 N15 W14 W09 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 17 0967 N15 W14 W09 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 17 0967 N15 W15 W15 05 16.3 BG EAI 150 30 13 4 | | | | 05 14 | | N13 | E26 | 05 | 16.2 | | | | 595 | 14 | | 3 | | 9454 30450 MWIL 05 14 1400 N12 E24 05 16.4 5 (B ) 9454 HOLL 05 14 1711 N12 E22 05 16.4 BG EAI 330 29 14 2 9454 VORO 05 14 2114 N13 E21 05 16.5 DAI 538 8 10 2 9454 LEAR 05 15 0138 N12 E17 05 16.3 BG EAO 250 29 14 3 9454 TACH 05 15 0532 N12 E14 05 16.3 DAI 506 9 10 3 9454 SVTO 05 15 0638 N12 E14 05 16.3 BG EAO 320 16 14 2 9454 KAND 05 15 0740 N13 E14 05 16.3 BG EAO 320 16 14 2 9454 RAMY 05 15 15 1235 N13 E11 05 16.4 EAO 11 1 13 4 9454 RAMY 05 15 1740 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 30450 MWIL 05 15 1740 N11 E07 05 16.3 BG EAI 230 18 13 1 9454 VORO 05 16 0005 N12 E04 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0030 N13 E05 05 16.4 DAI 354 4 10 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 SVTO 05 16 0825 N13 E0O 05 16.4 DAI 417 9 10 3 9454 SVTO 05 16 1510 N14 W04 05 16.3 BG EAI 331 7 10 2 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 SVTO 05 16 17 0015 N14 W09 05 16.3 BG EAI 331 7 10 2 9454 SVTO 05 17 0507 N13 W12 05 16.3 BG EAI 371 15 9 4 9454 SVTO 05 17 0947 N13 W14 05 16.3 BG EAO 180 17 12 2 9454 SVTO 05 17 1045 N14 W15 05 16.3 BG EAO 180 17 12 2 9454 SVTO 05 17 1045 N14 W15 05 16.3 BG EAO 17 12 4 9454 SVTO 05 17 1045 N14 W15 05 16.3 BG EAO 17 12 4 9454 SVTO 05 17 1045 N14 W15 05 16.3 BG EAO 17 12 4 | | | | | | | | | | | | | | | | | | 9454 | | 70/50 | | | | | | | | - | | EAO | 310 | 21 | 13 | 5 | | 9454 | | 30450 | | | | | | | | 5 | | EAT | 330 | 20 | 14 | 2 | | 9454 | | | | | | | | | | | ьч | | | | | 2 | | 9454 SVTO 05 15 0532 N12 E14 05 16.3 BG EAO 320 16 14 2 9454 KAND 05 15 0740 N13 E14 05 16.4 EAO 11 13 4 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 30450 MWIL 05 15 1400 N13 E11 05 16.4 5 (B ) 9454 HOLL 05 15 1740 N11 E07 05 16.3 BG EXI 300 24 13 3 9454 LEAR 05 16 0005 N12 E04 05 16.3 BG EXI 230 18 12 3 9454 VORO 05 16 0300 N13 E05 05 16.4 DAI 354 4 10 2 9454 SVTO 05 16 0839 N13 W00 05 16.4 BG EAO 230 26 14 2 9454 TACH 05 16 0839 N13 W00 05 16.4 BG EAO 230 26 14 2 9454 KAND 05 16 0925 N13 E00 05 16.4 BG EAO 230 26 14 2 9454 BAD 05 16 1510 N14 W04 05 16.3 BG EXI 22 13 2 9454 RAMY 05 16 1930 N14 W06 05 16.3 B EAO 200 23 12 3 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 TACH 05 16 1930 N14 W06 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 16 17 0015 N14 W09 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 16 1930 N14 W06 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 16 1930 N14 W09 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 16 1930 N14 W09 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 17 0015 N14 W09 05 16.3 BG EXI 331 7 10 2 9454 TACH 05 17 0015 N14 W09 05 16.3 BG EXI 150 30 13 4 9454 TACH 05 17 0015 N14 W09 05 16.3 BG EXI 150 30 13 4 9454 TACH 05 17 0015 N14 W09 05 16.3 BG EXI 150 30 13 4 9454 TACH 05 17 0015 N14 W09 05 16.3 BG EXI 150 30 13 4 9454 TACH 05 17 0015 N14 W09 05 16.3 BE EAO 180 17 12 2 9454 TACH 05 17 0015 N14 W19 05 16.3 BE EAO 180 17 12 2 9454 TACH 05 17 0015 N14 W19 05 16.3 BE EAO 180 17 12 2 9454 TACH 05 17 0045 N15 W14 W15 05 16.3 BE EAO 180 17 12 2 9454 TACH 05 17 1045 N14 W15 05 16.3 BE EAO 180 17 12 2 | | | | | | | | | | | BG | | | | | 3 | | 9454 RAMY 05 15 0740 N13 E14 05 16.4 EAO 11 13 4 9454 RAMY 05 15 1235 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 30450 MWIL 05 15 1400 N13 E11 05 16.4 5 (B) 9454 HOLL 05 15 1740 N11 E07 05 16.3 BG EXI 300 24 13 3 9454 LEAR 05 16 0005 N12 E04 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0030 N13 E05 05 16.4 DAI 354 4 10 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 TACH 05 16 0839 N13 W00 05 16.4 DAI 417 9 10 3 9454 KAND 05 16 0925 N13 E00 05 16.4 EAI 22 13 2 9454 SAMD 05 16 1415 N12 W02 05 16.4 EAI 22 13 2 9454 BOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 TACH 05 17 0507 N13 W12 05 16.3 BG EAI 150 30 13 4 9454 SAMO 05 16 1930 N14 W06 05 16.3 BG EAI 150 30 13 4 9454 SAMO 05 17 0507 N13 W12 05 16.3 BG EAI 150 30 13 4 9454 SAMO 05 17 0507 N13 W12 05 16.3 B EAO 180 17 12 2 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 | | | | | | | | | | | | | | | | 3 | | 9454 30450 MWIL 05 15 1235 N13 E11 05 16.3 BG EAI 230 18 13 1 9454 30450 MWIL 05 15 1400 N13 E11 05 16.4 5 (B ) 9454 HOLL 05 15 1740 N11 E07 05 16.3 BG EXI 300 24 13 3 9454 LEAR 05 16 0005 N12 E04 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0800 N13 E05 05 16.4 DAI 354 4 10 2 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 TACH 05 16 0839 N13 W00 05 16.4 DAI 417 9 10 3 9454 KAND 05 16 0925 N13 E00 05 16.4 DAI 417 9 10 3 9454 WORD 05 16 1415 N12 W02 05 16.4 EAI 22 13 2 9454 30450 MWIL 05 16 1415 N12 W02 05 16.4 5 (B ) 9454 RAMY 05 16 1930 N14 W04 05 16.3 B EAO 200 23 12 3 9454 POST OF STAN STAN STAN STAN STAN STAN STAN STAN | | | | | | | | | | | BG | | 320 | | | 2 | | 9454 30450 MWIL 05 15 1400 N13 E11 05 16.4 5 (B ) 9454 HOLL 05 15 1740 N11 E07 05 16.3 BG EKI 300 24 13 3 9454 LEAR 05 16 0005 N12 E04 05 16.3 BG EAI 230 18 12 3 9454 VORO 05 16 0030 N13 E05 05 16.4 DAI 354 4 10 2 9454 SVTO 05 16 0830 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 TACH 05 16 0839 N13 WOO 05 16.4 DAI 417 9 10 3 9454 KAND 05 16 0925 N13 E00 05 16.4 EAI 22 13 2 9454 SAND 05 16 1415 N12 WO2 05 16.4 EAI 22 13 2 9454 HOLL 05 16 1510 N14 WO4 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 WO6 05 16.3 BG ESO 190 7 11 1 9454 VORO 05 16 2324 N13 WO8 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 WO9 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 BG EAI 150 30 13 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | D.C | | 270 | | | | | 9454 | | 30/50 | | | | | | | | 5 | | | 230 | 10 | 13 | ' | | 9454 | | 30430 | | | | | | | | , | | | 300 | 24 | 13 | 3 | | 9454 SVTO 05 16 0800 N14 E01 05 16.4 BG EAO 230 26 14 2 9454 TACH 05 16 0839 N13 W00 05 16.4 DAI 417 9 10 3 9454 KAND 05 16 0925 N13 E00 05 16.4 EAI 22 13 2 9454 30450 MWIL 05 16 1415 N12 W02 05 16.4 5 (B) 9454 HOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 V0RO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 BG EAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | | | | | | 3 | | 9454 TACH 05 16 0839 N13 W00 05 16.4 DAI 417 9 10 3 9454 KAND 05 16 0925 N13 E00 05 16.4 EAI 22 13 2 9454 30450 MWIL 05 16 1415 N12 W02 05 16.4 5 (B) 9454 HOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 V0RO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | | | | | | 2 | | 9454 30450 MWIL 05 16 0925 N13 E00 05 16.4 EAI 22 13 2 9454 30450 MWIL 05 16 1415 N12 W02 05 16.4 5 (B ) 9454 HOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 V0RO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 2 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | BG | | | | | 2 | | 9454 30450 MWIL 05 16 1415 N12 W02 05 16.4 5 (B ) 9454 HOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 B EAO 180 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | | | 417 | | | 2 | | 9454 HOLL 05 16 1510 N14 W04 05 16.3 B EAO 200 23 12 3 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | 30450 | | | | | | | | 5 | (B ) | | | | 13 | ۲ | | 9454 RAMY 05 16 1930 N14 W06 05 16.3 BG ESO 190 7 11 1 9454 VORO 05 16 2324 N13 W08 05 16.4 DAI 331 7 10 2 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | 20470 | | | | | | | | - | | | 200 | 23 | 12 | 3 | | 9454 LEAR 05 17 0015 N14 W09 05 16.3 BG EAI 150 30 13 4 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | 9454 | | RAMY | 05 16 | 1930 | N14 | W06 | 05 | 16.3 | | | ES0 | 190 | 7 | 11 | 1 | | 9454 TACH 05 17 0507 N13 W12 05 16.3 DAI 371 15 9 4 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | | | | | | | | 9454 SVTO 05 17 0947 N15 W14 05 16.3 B EAO 180 17 12 2 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | BG | | | | | | | 9454 KAND 05 17 1045 N14 W15 05 16.3 EAO 17 12 4<br>9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | D | | | | | | | 9454 HOLL 05 17 1345 N13 W17 05 16.3 BG EAI 100 25 11 3 | | | | | | | | | | | ט | | 100 | | | | | | | | | | | | | | | | BG | | 100 | | | | | | | 30450 | | | 1400 | | | | | 5 | | | | | | | MAY | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454 | 30450<br>30450<br>30457<br>30457<br>30457<br>30457<br>30457<br>30473 | VORO KAND SVTO RAMY HOLL WWIL VORO SVTO KAND RAMY MWIL HOLL TACH MWIL KAND | Mo Day 05 18 05 18 05 18 05 18 05 18 05 18 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 19 05 20 05 11 05 15 05 16 05 17 05 18 05 18 05 19 05 22 05 22 05 22 05 22 05 23 05 23 | 0304<br>0640<br>0840<br>1340<br>1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1400<br>1405<br>1415<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 k N14 k N14 k N15 k N13 k N13 k N13 k N13 k N16 k N17 k N16 k N16 k N16 k N16 k N16 k N17 k N16 k N16 k N17 k N16 k N17 k N17 k N16 k N18 k N18 k N19 | 23<br>225<br>226<br>228<br>230<br>334<br>339<br>442<br>4445<br>55<br>73<br>19<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | Mo D 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 05 1 | 6.4<br>6.4<br>6.4<br>6.5<br>6.3<br>6.4<br>6.5<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>7.0<br>7.0<br>6.8<br>7.7<br>7.7<br>7.7 | 4<br>4<br>4<br>4<br>4 | BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB | DRO ESO ESO ESO AX DSO CSO AXX DAI BXO AX | (10-6 Hemi) 121 100 70 50 86 40 10 70 30 105 | 6 15 13 8 9 4 6 2 4 6 4 3 | (Deg) 8 11 12 11 11 11 9 13 1 10 11 4 13 | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|---| | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | KAND<br>SVTO<br>RAMY<br>HOLL<br>WWIL<br>VORO<br>KAND<br>RAMY<br>WWIL<br>HOLL<br>TACH<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MO<br>MUIL<br>KAND<br>MO<br>MUIL<br>MWIL<br>KAND<br>MO<br>MUIL<br>MWIL<br>KAND<br>MO<br>MUIL<br>MWIL<br>KAND<br>MO<br>MUIL<br>MWIL<br>MWIL<br>MWIL<br>MWIL<br>MWIL<br>MWIL<br>MWIL<br>MW | 05 18<br>05 18<br>05 18<br>05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 19<br>05 10<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0640<br>0840<br>1340<br>1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>1415<br>1400<br>1015<br>1415<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N14 h N15 h N13 h N13 h N13 h N13 h N15 h N15 h N16 h N16 h N16 h N16 h N08 | 25<br>226<br>228<br>230<br>339<br>442<br>444<br>455<br>73<br>19<br>66<br>60<br>17<br>17<br>17<br>19<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>66.4<br>66.5<br>66.6<br>66.3<br>66.3<br>66.3<br>66.3<br>66.3<br>66.3 | 4 4 4 4 | B B (B) B (B) B (AP) (AP) (AP) (AP) B | ESO EAO ESO CRO ESO AX DSO CSO AXX DAI BXO AX | 100<br>70<br>50<br>86<br>40<br>10<br>70<br>30<br>105 | 15<br>13<br>8<br>9<br>4<br>6<br>2<br>4<br>6<br>4<br>3 | 11<br>12<br>11<br>11<br>11<br>9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454 9454 9454 9454 9454 9454 9454 9454 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | SVTO RAMY HOLL MWIL VORO KAND RAMY MWIL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL LEAR TACH KAND HOLL LEAR HOLL | 05 18<br>05 18<br>05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 10<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0840<br>1340<br>1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>1415<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N15 h N13 h N13 h N13 h N13 h N13 h N15 h N16 h N16 h N16 h N16 h N16 h N08 | 26<br>228<br>230<br>339<br>442<br>444<br>455<br>73<br>196<br>80<br>173<br>133<br>157<br>166<br>166<br>166<br>166<br>167<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>66.5<br>66.3<br>66.4<br>66.9<br>66.3<br>66.3<br>66.4<br>67.0<br>77.0<br>66.8<br>77.7<br>77.6<br>77.7 | 4 4 4 4 | B B (B) B (B) B (AP) (AP) (AP) (AP) B | EAO ESO ESO CRO ESO AX DSO CSO AXX DAI BXO AX | 70<br>50<br>86<br>40<br>10<br>70<br>30<br>105 | 13<br>8<br>9<br>4<br>6<br>2<br>4<br>6<br>4<br>3 | 12<br>11<br>11<br>9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | RAMY HOLL MWIL VORO SVTO KAND RAMY MWIL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL LEAR TACH KAND HOLL LEAR HOLL | 05 18<br>05 18<br>05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1340<br>1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>1415<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N15 h N13 h N14 h N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N16 h N08 | 28<br>28<br>33<br>34<br>39<br>44<br>44<br>45<br>55<br>73<br>19<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>6.5<br>6.3<br>6.4<br>6.9<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>7.0<br>7.0<br>7.0<br>6.8<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B B (B) B (B) B (AP) (AP) (AP) (AP) B | ESO ESO CRO ESO AX DSO CSO AXX DAI BXO AX | 70<br>50<br>86<br>40<br>10<br>70<br>30<br>105 | 8<br>9<br>4<br>6<br>2<br>4<br>6<br>4<br>3 | 11<br>11<br>9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | RAMY HOLL MWIL VORO SVTO KAND RAMY MWIL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL LEAR TACH KAND HOLL LEAR HOLL | 05 18<br>05 18<br>05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1340<br>1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>1415<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N15 h N13 h N14 h N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N16 h N08 | 28<br>28<br>33<br>34<br>39<br>44<br>44<br>45<br>55<br>73<br>19<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>6.5<br>6.3<br>6.4<br>6.9<br>6.3<br>6.3<br>6.3<br>6.3<br>6.3<br>7.0<br>7.0<br>7.0<br>6.8<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B B (B) B (B) B (AP) (AP) (AP) (AP) B | ESO ESO CRO ESO AX DSO CSO AXX DAI BXO AX | 70<br>50<br>86<br>40<br>10<br>70<br>30<br>105 | 8<br>9<br>4<br>6<br>2<br>4<br>6<br>4<br>3 | 11<br>11<br>9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>30<br>9454A<br>30<br>9454A<br>9454A<br>30<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | HOLL MWIL VORO SVTO KAND RAMY MWIL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL LEAR TACH KAND MVIL LEAR HOLL | 05 18<br>05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1358<br>1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>0640<br>1415<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 M<br>N13 M<br>N14 M<br>N13 M<br>N14 M<br>N13 M<br>N15 M<br>S13 E<br>N15 E<br>N17 M<br>N16 M<br>N16 M<br>N16 M<br>N16 M<br>N16 M<br>N18 M<br>N08 M<br>N08 M<br>N08 M<br>N08 M<br>N08 M | 28<br>33<br>33<br>44<br>44<br>45<br>5<br>7<br>3<br>19<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7<br>6<br>7 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.5<br>6.3<br>6.4<br>6.5<br>6.3<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B (B ) B (B ) B (AP) (AP) (AP) B (AP) | CRO ESO AX DSO CSO AXX DAI BXO AX | 50<br>86<br>40<br>10<br>70<br>30<br>105 | 9<br>4<br>6<br>2<br>4<br>6<br>4<br>3 | 11<br>9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454 30 9454 9454 9454 9454 9454 9454 9454 30 9454 30 9454A 9469 9469 9469 9469 9469 9469 9460 30 9460 30 9460 30 9460 9460 9460 30 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | MWIL VORO SVTO KAND RAMY MWIL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL LEAR TACH KAND MWIL LEAR HOLL | 05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>1415<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 h N14 h N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N18 h N08 | 339<br>4462<br>4424<br>4455<br>73<br>19608<br>177<br>1235<br>138<br>157<br>1663<br>1665<br>167<br>167 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.3<br>6.4<br>6.4<br>5.9<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>6.8<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | (B) B (B) B A (AP) (AP) (AP) (AP) B | CRO<br>ESO<br>AX<br>DSO<br>CSO<br>AXX<br>DAI<br>BXO<br>AX | 86<br>40<br>10<br>70<br>30<br>105 | 4<br>6<br>2<br>4<br>6<br>4<br>3 | 9<br>13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9454A<br>30<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | VORO<br>SVTO<br>KAND<br>RAMY<br>MWIL<br>HOLL<br>TACH<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 18<br>05 19<br>05 19<br>05 19<br>05 19<br>05 19<br>05 15<br>05 16<br>05 16<br>05 18<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 2247<br>0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1405<br>1405<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 h N14 h N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N08 | 34<br>39<br>446<br>442<br>444<br>455<br>73<br>19<br>66<br>108<br>117<br>123<br>135<br>137<br>166<br>166<br>166<br>166<br>166<br>167 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>6.4<br>5.9<br>6.3<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>6.8<br>6.8<br>7.7<br>7.0<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B B (B) B A (AP) (AP) (AP) (AP) | ESO<br>AX<br>DSO<br>CSO<br>AXX<br>DAI<br>BXO<br>AX | 40<br>10<br>70<br>30<br>105 | 6<br>2<br>4<br>6<br>4<br>3<br>5<br>2 | 13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>9454<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | SVTO<br>KAND<br>RAMY<br>MWIL<br>HOLL<br>TACH<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0931<br>1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1400<br>1405<br>1415<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N08 | 39<br>146<br>142<br>144<br>145<br>155<br>173<br>190<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>5.9<br>6.3<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>7.7<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B (B) B A (AP) (AP) (AP) (AP) | ESO<br>AX<br>DSO<br>CSO<br>AXX<br>DAI<br>BXO<br>AX | 40<br>10<br>70<br>30<br>105 | 6<br>2<br>4<br>6<br>4<br>3<br>5<br>2 | 13<br>1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>9454<br>94548<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | KAND<br>RAMY<br>MWIL<br>HOLL<br>TACH<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1015<br>1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>1415<br>1400<br>0640<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 h N14 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N08 | 1446<br>1442<br>1444<br>1445<br>1555<br>73<br>119<br>106<br>108<br>117<br>123<br>135<br>135<br>135<br>135<br>166<br>165<br>166<br>165<br>166<br>167<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 5.9<br>6.3<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>6.7<br>7.7<br>7.7<br>7.7 | 4 4 4 4 | B (B) B A (AP) (AP) (AP) (AP) | AX<br>DSO<br>CSO<br>AXX<br>DAI<br>BXO<br>AX | 10<br>70<br>30<br>105 | 2<br>4<br>6<br>4<br>3<br>5<br>2 | 1<br>10<br>11<br>4<br>13 | | | 9454<br>9454<br>9454<br>9454<br>94548<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | RAMY<br>MWIL<br>HOLL<br>TACH<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1220<br>1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>0640<br>1405<br>1415<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N14 h N13 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N08 h N08 h N08 h N08 h N09 h N09 h N07 h | 142<br>144<br>145<br>155<br>73<br>119<br>106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>165<br>166<br>165<br>166<br>167<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.3<br>6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7 | 4 4 4 4 | (AP) (AP) (AP) (AP) | DSO CSO AXX DAI BXO AX BXO AR | 70<br>30<br>105 | 4<br>6<br>4<br>3<br>5<br>2 | 10<br>11<br>4<br>13<br>4<br>2 | | | 9454 30 9454 9454 9454 9454 30 9454 30 9454 30 9454 30 9454 30 9454 30 9454 30 9454 30 9454 30 9469 9469 9469 9469 9469 9460 9460 946 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | MWIL<br>HOLL<br>TACH<br>MWIL<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1415<br>1720<br>1441<br>0651<br>1400<br>0640<br>1415<br>1400<br>0640<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 h N13 h N15 h S13 E N15 E N17 h N16 h N16 h N16 h N08 N09 h N07 h | 144<br>145<br>155<br>73<br>19<br>106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.3<br>6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7 | 4 4 4 4 | (AP) (AP) (AP) (AP) | CSO<br>AXX<br>DAI<br>BXO<br>AX | 70<br>30<br>105 | 6<br>4<br>3<br>5<br>2 | 11<br>4<br>13<br>4<br>2 | 3 | | 9454<br>9454B<br>9454B<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457<br>30457 | HOLL HOLL TACH MWIL KAND MWIL KAND MWIL LEAR TACH KAND MVIL SVTO HOLL LEAR HOLL | 05 19<br>05 20<br>05 11<br>05 15<br>05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1720<br>1441<br>0651<br>1400<br>1415<br>1400<br>0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N13 h<br>N15 h<br>S13 E<br>N15 E<br>N17 h<br>N16 h<br>N16 h<br>N16 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h | 145<br>155<br>73<br>19<br>106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.3<br>6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7 | 4 4 4 4 | (AP) (AP) (AP) (AP) | BXO AX BXO AR | 30<br>105<br>20 | 4<br>3<br>5<br>2 | 4<br>13<br>4<br>2 | | | 9454<br>94548<br>94548<br>94544<br>94544<br>94544<br>94544<br>94544<br>94544<br>94544<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457 | HOLL TACH MWIL MWIL KAND MWIL LEAR TACH KAND MWIL SVTO HOLL LEAR HOLL | 05 20 05 11 05 15 05 16 05 17 05 18 05 19 05 19 05 22 05 22 05 22 05 22 05 22 05 23 05 23 | 1441<br>0651<br>1400<br>1415<br>1400<br>0640<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 h S13 E N15 E N17 h N17 h N16 h N16 h N18 h N08 | 73<br>19<br>006<br>108<br>117<br>123<br>135<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.4<br>6.8<br>7.0<br>7.0<br>7.0<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 4 4 | (AP)<br>(AP)<br>(AP)<br>(AP) | BXO AX BXO AR | 30<br>105<br>20 | 4<br>3<br>5<br>2 | 4<br>13<br>4<br>2 | | | 9454 30 9454A 9469 9469 9469 9469 9469 9460 9460 946 | 30457<br>30457<br>30457<br>30457<br>30457 | HOLL TACH MWIL MWIL KAND MWIL LEAR TACH KAND MWIL SVTO HOLL LEAR HOLL | 05 20 05 11 05 15 05 16 05 17 05 18 05 19 05 19 05 22 05 22 05 22 05 22 05 22 05 23 05 23 | 1441<br>0651<br>1400<br>1415<br>1400<br>0640<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 h S13 E N15 E N17 h N17 h N16 h N16 h N18 h N08 | 73<br>19<br>006<br>108<br>117<br>123<br>135<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.8<br>7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7 | 4 4 4 | (AP)<br>(AP)<br>(AP)<br>(AP) | BXO AX BXO AR | 105 | 3<br>5<br>2<br>3<br>2 | 13<br>4<br>2<br>4<br>2 | | | 9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9459<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457 | MWIL<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>1415<br>1400<br>0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 E<br>N15 E<br>N17 h<br>N17 h<br>N16 h<br>N16 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h | 119<br>106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 4 4 | (AP)<br>(AP)<br>(AP)<br>(AP) | BXO<br>AX<br>BXO<br>AR | 20 | 5<br>2<br>3<br>2 | 4<br>2<br>4<br>2 | | | 9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9454A 30<br>9459<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30457<br>30457<br>30457 | MWIL<br>MWIL<br>KAND<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 15<br>05 16<br>05 17<br>05 18<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>1415<br>1400<br>0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 E<br>N15 E<br>N17 h<br>N17 h<br>N16 h<br>N16 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h | 119<br>106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.0<br>7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 4 4 | (AP)<br>(AP)<br>(AP)<br>(AP) | BXO<br>AX<br>BXO<br>AR | 20 | 2<br>3<br>2 | 4<br>2<br>4<br>2 | 3 | | 9454A 30 9454A 30 9454A 30 9454A 30 9454A 30 9454A 30 9469 9469 9469 9469 9469 9460 9460 946 | 30457<br>30457<br>30457<br>30457<br>30457 | MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL SVTO HOLL LEAR HOLL | 05 16<br>05 17<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1415<br>1400<br>0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N15 E<br>N17 h<br>N16 h<br>N16 h<br>N16 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h<br>N08 h | 106<br>108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>1669<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.0<br>7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 4 4 | (AP)<br>(AP)<br>(AP)<br>(AP) | AX<br>BXO<br>AR | | 2<br>3<br>2 | 2<br>4<br>2 | 3 | | 9454A 30 9454A 30 9454A 30 9454A 30 9454A 30 9469 9469 9469 9469 9469 9460 9460 946 | 30457<br>30457<br>30457<br>30457 | MWIL KAND MWIL KAND MWIL LEAR TACH KAND MWIL SVTO HOLL LEAR HOLL | 05 17<br>05 18<br>05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N17 h N17 h N16 h N16 h N16 h N08 h N08 h N08 h N08 h N08 h N08 h N07 h | 108<br>117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.0<br>7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 4 | (AP) (AP) (AP) B | AX<br>BXO<br>AR | | 2<br>3<br>2 | 2<br>4<br>2 | 3 | | 9454A<br>9454A<br>9454A<br>9454A<br>9454A<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30457<br>30457<br>30473 | KAND<br>MWIL<br>KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0640<br>1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N17 h N16 h N16 h N16 h N08 h N08 h N08 h N08 h N08 h N08 h N07 h | 117<br>123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.0<br>6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 | (AP)<br>(AP)<br>B | AX<br>BXO<br>AR | | 2<br>3<br>2 | 2<br>4<br>2 | 3 | | 2454A 30 2454A 30 2454A 30 2469 2469 2469 2469 2469 2460 2460 2460 2460 2460 2460 2460 2460 | 30457<br>30473 | MWIL KAND MWIL LEAR TACH KAND MWIL SVTO HOLL LEAR HOLL | 05 18<br>05 19<br>05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N16 h N16 h N08 | 123<br>135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.8<br>6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 | (AP) | AX<br>BXO<br>AR | | 2<br>3<br>2 | 2<br>4<br>2 | | | 2454A 30 2469 2469 2469 2469 2469 2469 2460 2460 2460 2460 2460 2460 2460 2460 | 30457<br>30473 | KAND<br>MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1015<br>1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N16 h N16 h N08 N07 h | 135<br>138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.8<br>6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | 4 | (AP) | BXO<br>AR | | 3<br>2 | 4<br>2 | | | 9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460 | 30473 | MWIL<br>LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 19<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1415<br>0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N16 h N08 h N08 h N08 h N08 h N08 h N09 h N07 h | 138<br>157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 6.7<br>7.7<br>7.8<br>7.7<br>7.6<br>7.7 | | В | BXO<br>AR | | 3<br>2 | 4<br>2 | | | 9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460 | 30473 | LEAR<br>TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0025<br>0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | N08 h<br>N08 h<br>N08 h<br>N08 h<br>N09 h<br>N07 h | 157<br>160<br>163<br>166<br>165<br>169 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.7<br>7.8<br>7.7<br>7.6<br>7.7 | | В | AR | | 2 | 2 | | | 9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460 | | TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | NO8 h<br>NO8 h<br>NO8 h<br>NO8 h<br>NO9 h | 160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.8<br>7.7<br>7.6<br>7.7 | 4 | | AR | | 2 | 2 | | | 9469<br>9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460 | | TACH<br>KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0619<br>0950<br>1400<br>1445<br>1450<br>0622<br>1330 | NO8 h<br>NO8 h<br>NO8 h<br>NO8 h<br>NO9 h | 160<br>163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1<br>05 1 | 7.8<br>7.7<br>7.6<br>7.7 | 4 | | AR | | 2 | 2 | | | 9469<br>9469<br>9469<br>9469<br>9469<br>9460<br>9460<br>9460 | | KAND<br>MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 0950<br>1400<br>1445<br>1450<br>0622<br>1330 | NO8 h<br>NO8 h<br>NO8 h<br>NO9 h<br>NO7 h | 163<br>166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1<br>05 1 | 7.7<br>7.6<br>7.7 | 4 | (B ) | | ٥. | | | | | 9469 30<br>9469 9469 9469 9469 9460 9460 9460 9460 | | MWIL<br>SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 22<br>05 23<br>05 23 | 1400<br>1445<br>1450<br>0622<br>1330 | NO8 W<br>NO8 W<br>NO9 W<br>NO7 W | 166<br>165<br>169<br>176 | 05 1<br>05 1<br>05 1 | 7.6<br>7.7 | 4 | (B) | DVO | | 7 | ₹ | | | 9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460 | | SVTO<br>HOLL<br>LEAR<br>HOLL | 05 22<br>05 22<br>05 23<br>05 23 | 1445<br>1450<br>0622<br>1330 | NO8 W<br>NO9 W<br>NO7 W | 165<br>169<br>176 | 05 1<br>05 1 | 7.7 | 4 | (0) | | | | | | | 9469<br>9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460 | 30473 | HOLL<br>LEAR<br>HOLL | 05 22<br>05 23<br>05 23 | 1450<br>0622<br>1330 | N09 W | 169<br>176 | 05 1 | | | | D.4.C | /0 | 7 | 2 | | | 9469<br>9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30473 | LEAR<br>HOLL | 05 23<br>05 23 | 0622<br>1330 | N07 W | 176 | | 1.4 | | В | DAO | 40 | 3 | 6 | | | 9469<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30473 | HOLL | 05 23 | 1330 | | | U5 1 | | | В | CSO | 80 | 5 | 3 | | | 9469 30<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>946 | 30473 | | | | N07 W | | | | | В | CSO | 30 | 3 | 5 | | | 9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | 30473 | MWIL | 05 23 | 1/00 | | | 05 1 | | | Α | HAX | 60 | 2 | 2 | | | 9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | | | | 1400 | N07 W | 178 | 05 1 | 7.7 | 4 | (AP) | | | | | | | 9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | | SVTO | 05 14 | 0515 | S23 E | | 05 1 | 9.5 | | Α | AXX | | 1 | | | | 9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 | | KAND | 05 14 | 0820 | S22 E | | 05 1 | 9.7 | | | AX | | 1 | | | | 9460 30<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 30<br>9460 30 | | RAMY | 05 14 | 1210 | S24 E | | 05 1 | 9.6 | | Α | AXX | | 1 | | | | 9460<br>9460<br>9460<br>9460<br>9460<br>9460<br>9460 30 | 30456 | MWIL | 05 14 | 1400 | S23 E | | 05 1 | | 4 | (AP) | | | - | | | | 9460<br>9460<br>9460<br>9460<br>9460 30<br>9460 30 | 30430 | HOLL | 05 14 | 1711 | S23 E | | 05 1 | | • | A | AXX | 10 | 1 | 1 | | | 9460<br>9460<br>9460<br>9460 30<br>9460 30 | | | | | | | | | | | | | | i | | | 9460<br>9460<br>9460 30<br>9460<br>9460A 30 | | LEAR | 05 15 | 0138 | S24 E | | 05 1 | | | A | AXX | 10 | 1 | | | | 9460<br>9460 30<br>9460<br>9460A 30 | | SVTO | 05 15 | 0638 | S24 E | | 05 1 | | | Α | AXX | | 1 | | | | 9460 30<br>9460<br>9460A 30<br>9470 30 | | KAND | 05 15 | 0740 | S22 E | | 05 1 | | | | AX | | 1 | | | | 9460<br>9460a 30<br>9470 30 | | RAMY | 05 15 | 1235 | S24 E | 53 | 05 1 | 9.6 | | Α | AXX | | 1 | | | | 9460<br>9460a 30<br>9470 30 | 30456 | MWIL | 05 15 | 1400 | S23 E | | 05 1 | 9.7 | 3 | (AP) | | | | | | | 9460A 30 | | HOLL | 05 15 | 1740 | S24 E | | 05 1 | | | A | AXX | | 1 | 1 | | | 9470 30 | 30458 | MWIL | 05 15 | 1400 | N15 E | | 05 2 | | 4 | (AF) | - | | | | | | | | | | | | | | | | | | | | | | | | 30469 | MWIL | 05 21 | 1415 | S17 W | | 05 2 | | 4 | (AP) | DV- | 40 | - | _ | | | 2470 | | LEAR | 05 22 | 0025 | S17 V | | 05 2 | | | В | BXO | 10 | 3 | 2 | | | 9470 | | TACH | 05 22 | 0619 | S17 k | | 05 2 | | | | BRO | 38 | 3 | 1 | | | 7470 | | KAND | 05 22 | 0950 | S17 k | | 05 2 | | | | AX | | 3 | 2 | | | | 30469 | MWIL | 05 22 | 1400 | S17 V | | 05 2 | 1.5 | 4 | (BF) | | | | | | | 470 | | SVTO | 05 22 | 1445 | S16 V | | 05 2 | 1.5 | | A | HSX | 10 | 1 | 1 | | | 470 | | HOLL | 05 22 | 1450 | S12 V | | 05 2 | | | Ä | AXX | 10 | 1 | 1 | | | 7470 | | LEAR | 05 23 | 0622 | S17 V | | 05 2 | | | Â | AXX | 10 | i | i | | | 9470 | | RAMY | 05 23 | 1232 | S16 k | | 05 2 | | | Ā | AXX | 10 | i | i | | | | | | | | | | ט ב | . 1 . J<br>11 F | | | | 10 | | ' | | | 9470<br>9470 30 | 30469 | HOLL<br>MWIL | 05 23<br>05 23 | 1330<br>1400 | S16 N<br>S17 N | | 05 2<br>05 2 | 21.4 | 4 | A<br>(AF) | AXX | | 1 | | | | | 30459 | MWIL | 05 15 | 1400 | N18 E | | 05 2 | | 5 | ВР | | | | | | | | J0437 | | | | | | רט בי | . 1 . ブ | ر | | DVO | 10 | 2 | | | | 9461 | | HOLL | 05 15 | 1740 | N15 E | | 05 2 | | | В | BXO | 10 | 2 | 4 | | | 9461 | | LEAR | 05 16 | 0005 | N16 E | | 05 2 | | | В | DSO | 70 | 4 | 5 | | | 9461 | | SVTO | 05 16 | 0800 | N16 E | | 05 2 | | | В | DAO | 90 | 4 | 5 | | | 9461 | | TACH | 05 16 | 0839 | N16 E | | 05 2 | | | | CSO | 50 | 2 | 3 | | | 9461 | | KAND | 05 16 | 0925 | N19 E | 70 | 05 2 | | | | DAO | | 2 | 2 | | | | | | 05 16 | 1415 | N18 E | | 05 2 | | 5 | (BP) | | | | | | | 9461 | 30459 | MWIL | 05 16 | 1510 | N16 E | | 05 2 | | | В | DAO | 120 | 3 | 6 | | | 9461 | 30459 | MWIL<br>HOLL | | 1930 | N21 E | | 05 2 | | | В | DSO | 70 | 3 | 7 | | MAY | NOAA/<br>Usaf | Mt<br>Wilson | | 0bserv | ation<br>Time | | CMP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------------|---------------|--------------------|--------------------|-----|--------|------------|-------------------|----------|-----------------|--------| | Group | Group | Sta | Mo Day | | Lat CMD | Mo Day | H | | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9461 | | VORO | 05 16 | 2324 | N16 E64 | 05 21.8 | | | нах | 242 | 2 | 1 | 2 | | 9461 | | LEAR | 05 17 | 0015 | N19 E62 | 05 21.7 | | В | DAO | 60<br>138 | 9 | 9 | 4 | | 9461<br>9461 | | TACH<br>SVTO | 05 17<br>05 17 | 0507<br>0947 | N18 E59<br>N17 E56 | 05 21.7<br>05 21.7 | | В | DSI<br>DSO | 128<br>130 | 6<br>7 | 3<br>8 | 4<br>2 | | 9461 | | KAND | 05 17 | 1045 | N21 E56 | 05 21.7 | | ь | DAO | 150 | 5 | 2 | 4 | | 9461 | | HOLL | 05 17 | 1345 | N16 E55 | 05 21.7 | | В | DAO | 170 | 7 | 7 | 3 | | 9461 | 30459 | MWIL | 05 17 | 1400 | N20 E55 | 05 21.8 | 5 | (BP) | | | _ | | _ | | 9461 | | VORO | 05 18 | 0304 | N18 E48 | 05 21.8 | | | HAX | 211 | 6 | 4 | 2 | | 9461 | | KAND | 05 18<br>05 18 | 0640<br>0840 | N20 E46<br>N19 E45 | 05 21.8<br>05 21.8 | | В | DSO<br>Dai | 110 | 17<br>15 | 8<br>10 | 3 | | 9461<br>9461 | | SVTO<br>RAMY | 05 18 | 1340 | N19 E43 | 05 21.8 | | В | DSO | 80 | 15 | 8 | 2<br>2 | | 9461 | | HOLL | 05 18 | 1358 | N18 E45 | 05 22.0 | | В | DAO | 100 | 18 | 8 | 3 | | 9461 | 30459 | MWIL | 05 18 | 1400 | N20 E42 | 05 21.8 | 5 | (BP) | | | | | | | 9461 | | VORO | 05 18 | 2247 | N17 E37 | 05 21.8 | | _ | HAX | 427 | 6 | 4 | 2<br>2 | | 9461 | | SVTO | 05 19<br>05 19 | 0931<br>1015 | N19 E32<br>N22 E30 | 05 21.8<br>05 21.7 | | В | EAI<br>DAO | 200 | 14<br>10 | 11<br>7 | 2 | | 9461<br>9461 | | KAND<br>Ramy | 05 19 | 1220 | N22 E30 | 05 21.7 | | В | DAO | 90 | 12 | 7 | 2 | | 9461 | 30459 | MWIL | 05 19 | 1415 | N20 E28 | 05 21.7 | 5 | (BP) | 5710 | ,, | | • | _ | | 9461 | | HOLL | 05 19 | 1720 | N17 E28 | 05 21.8 | | В | DAO | 200 | 18 | 8 | 3 | | 9461 | | VORO | 05 19 | 2115 | N22 E26 | 05 21.9 | | | CSO | 296 | 5 | 7 | 2 | | 9461 | | TACH | 05 20 | 0548 | N20 E20 | 05 21.8 | | | CSI | 171 | 5 | 7 | 3 | | 9461<br>9461 | | LEAR<br>SVTO | 05 20<br>05 20 | 0745<br>1005 | N21 E17<br>N21 E16 | 05 21.6<br>05 21.6 | | B<br>B | DAO<br>EAO | 140<br>130 | 10<br>11 | 8<br>12 | 2<br>2 | | 9461 | | RAMY | 05 20 | 1405 | N21 E16 | 05 21.8 | | В | DSO | 80 | 6 | 8 | 1 | | 9461 | 30459 | MWIL | 05 20 | 1415 | N21 E15 | 05 21.7 | 5 | (BP) | | | • | • | • | | 9461 | | KAND | 05 20 | 1425 | N21 E15 | 05 21.7 | | | DSO | | 6 | 8 | 4 | | 9461 | | HOLL | 05 20 | 1441 | N24 E15 | 05 21.8 | | В | DSO | 150 | 15 | 8 | 3 | | 9461 | | TACH | 05 21 | 0624 | N20 E06 | 05 21.7 | | | CSO | 340 | 3<br>4 | 5<br>7 | 3<br>3 | | 9461<br>9461 | | KAND<br>Ramy | 05 21<br>05 21 | 0650<br>1247 | N22 E06<br>N19 E01 | 05 21.7<br>05 21.6 | | В | CSO<br>CSO | 80 | 2 | ,<br>5 | 3<br>1 | | 9461 | 30459 | MWIL | 05 21 | 1415 | N20 W00 | 05 21.6 | 5 | (BP) | 030 | 00 | _ | | • | | 9461 | 50157 | HOLL | 05 21 | 1515 | N23 W03 | 05 21.4 | - | В | CSO | 70 | 6 | 5 | 2 | | 9461 | | VORO | 05 21 | 2324 | N22 W05 | 05 21.6 | | | HAX | 40 | 2 | _ | 1 | | 9461 | | LEAR | 05 22 | 0025 | N20 W07 | 05 21.5 | | В | CSO | 70 | 5 | 5 | 3 | | 9461 | | TACH | 05 22 | 0619<br>0950 | N21 W09<br>N21 W11 | 05 21.6<br>05 21.6 | | | HSX<br>HA | 200 | 1<br>3 | 1<br>2 | 4<br>3 | | 9461<br>9461 | 30459 | KAND<br>MWIL | 05 22<br>05 22 | 1400 | N21 W11 | 05 21.6 | 5 | (BP) | | | J | 2 | , | | 9461 | 30437 | SVTO | 05 22 | 1445 | N22 W13 | 05 21.6 | _ | A | HSX | 90 | 1 | 2 | 2 | | 9461 | | HOLL | 05 22 | 1450 | N23 W14 | 05 21.5 | | В | CSO | 80 | 3 | 3 | 4 | | 9461 | | VORO | 05 23 | 0002 | N21 W19 | 05 21.5 | | | HAX | 65 | 4 | _ | 2 | | 9461 | | LEAR | 05 23 | 0622 | N22 W22 | 05 21.6 | | В | DAO | 40<br>450 | 4 | 2 | 1 | | 9461 | | TACH | 05 23<br>05 23 | 0623<br>0830 | N22 W22<br>N21 W23 | 05 21.6<br>05 21.6 | | | HA<br>HS | 150 | 2<br>5 | 1<br>2 | 2<br>1 | | 9461<br>9461 | | KAND<br>RAMY | 05 23 | 1232 | N21 W25 | 05 21.6 | | В | DSO | 20 | 3 | 3 | 3 | | 9461 | | SVTO | 05 23 | 1303 | N23 W24 | 05 21.7 | | В | CSO | 40 | 4 | 3 | 2 | | 9461 | | HOLL | 05 23 | 1330 | N21 W27 | 05 21.5 | | В | DAO | 60 | 7 | 3 | 4 | | 9461 | 30459 | MWIL | 05 23 | 1400 | N21 W26 | 05 21.6 | 5 | (AP) | | | | _ | _ | | 9461 | | LEAR | 05 24 | 0025 | N22 W33 | 05 21.5 | | В | DAO | 50 | 6 | 2 | 2 | | 9461<br>9461 | | TACH<br>KAND | 05 24<br>05 24 | 0553<br>0640 | N21 W35<br>N21 W34 | 05 21.6<br>05 21.7 | | | HA<br>HA | 80 | 2<br>5 | 2<br>3 | 3<br>3 | | 9461 | | SVTO | 05 24 | 0750 | N21 W36 | 05 21.6 | | В | CSO | 30 | 4 | 3 | 2 | | 9461 | | RAMY | 05 24 | 1115 | N21 W39 | 05 21.5 | | В | DSO | 40 | 2 | 2 | 2 | | 9461 | | HOLL | 05 24 | 1315 | N22 W40 | 05 21.5 | | Α | HAX | 40 | 2 | 2 | 2 | | 9461 | 30459 | MWIL | 05 24 | 1430 | N21 W40 | 05 21.5 | 5 | (AP) | | 7.0 | _ | • | - | | 9461 | | LEAR | 05 25 | 0120 | N22 W47 | 05 21.4 | | A | HAX | 30<br>50 | 2<br>1 | 2<br>1 | 3<br>4 | | 9461<br>9461 | | TACH<br>KAND | 05 25<br>05 25 | 0658<br>0950 | N21 W50<br>N21 W50 | 05 21.4<br>05 21.6 | | | HSX<br>HA | 50 | 1 | 2 | 5 | | 9461 | | RAMY | 05 25 | 1205 | N21 W51 | 05 21.6 | | Α | HSX | 20 | i | 1 | 3 | | 9461 | | SVTO | 05 25 | 1303 | N23 W54 | 05 21.4 | | В | CSO | 40 | 4 | 3 | 3<br>2 | | 9461 | | HOLL | 05 25 | 1312 | N23 W53 | 05 21.5 | | Α | HAX | 30 | 1 | 1 | 3 | | 9461 | 30459 | MWIL | 05 25 | 1430 | N22 W53 | 05 21.5 | 4 | (AP) | | | 4 | | | | 9461 | | LEAR | 05 26 | 0029 | N21 W58 | 05 21.6 | | Α | HSX | 20<br>45 | 1 | 1 | 1 | | 9461<br>9461 | | TA6H<br>SVTO | 05 26<br>05 26 | 0640<br>0853 | N21 W62<br>N22 W65 | 05 21.5<br>05 21.4 | | Α | HSX<br>HSX | 45<br>20 | 1<br>1 | 2<br>1 | 4<br>2 | | 9461 | | RAMY | 05 26 | 1301 | N22 W65 | 05 21.4 | | A | HSX | 40 | i | 2 | 2 | | 9461 | | HOLL | 05 26 | 1329 | N23 W66 | 05 21.5 | | Â | HAX | 40 | i | 1 | 3 | | | | KAND | 05 26 | 1330 | N21 W64 | 05 21.6 | | | HS | | 1 | 1 | 3 | | 9461 | | KAND | | | | | | | | | • | • | | | | 30459 | MWIL<br>VORO | 05 26<br>05 26 | 1430<br>2327 | N21 W66<br>N20 W71 | 05 21.5<br>05 21.5 | 4 | (AP) | | 48 | 1 | • | 3 | MAY | NOAA/ | Mt | | 0bs | erv | ation | | | | | | | | Corrected | | Long. | | |----------------|-----------------|--------------|----------|-----|--------------|-----|-------------|----------|--------------|----------|-----------|---------------|---------------------|---------------|-----------------|--------| | USAF<br>Group | Wilson<br>Group | Sta | Мо | Day | Time<br>(UT) | Lat | CMD | CI<br>Mo | 1P<br>Day | Max<br>H | _ | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent<br>(Deg) | Qual | | 9461 | | LEAR | 05 | 27 | 0027 | N22 | W71 | 05 | 21.6 | | A | HAX | 30 | 1 | 1 | 2 | | 9461 | | SVTO | 05 | | 0515 | | W74 | | 21.5 | | Ä | HAX | 30 | 1 | 1 | 3 | | 9461 | | TACH | 05 | | 0547 | | W74 | | 21.6 | | | AXX | 1 | 1 | 1 | 2 | | 9461 | | KAND | 05 | | 0800 | | W75 | | 21.6 | | | AX | | 1 | 1 | 3 | | 9461 | | RAMY | 05 | 27 | 1220 | N22 | W78 | | 21.5 | | Α | HSX | 30 | 1 | 1 | 3 | | 9461 | 30459 | MWIL | 05 | 27 | 1400 | N21 | W79 | 05 | 21.5 | 4 | AP | | | | | | | 9461A<br>9461A | 30460 | MWIL | 05<br>05 | | 1400<br>0925 | | E83<br>E74 | | 21.9 | 4 | AP | на | | 1 | 2 | 2 | | 9461A | 30460 | KAND<br>MWIL | 05 | | 1415 | | E69 | | 21.8 | 4 | (AP) | пА | | ' | 2 | 2 | | 9461A | 30400 | KAND | 05 | | 1045 | | E58 | | 21.8 | • | (//// | HS | | 1 | 1 | 4 | | 9461A | 30460 | MWIL | 05 | | 1400 | | E56 | | 21.8 | 5 | (AP) | | | • | • | • | | 9461A | | KAND | 05 | | 0640 | | E47 | | 21.8 | | •••• | НS | | 2 | 1 | 3 | | 9461A | 30460 | MWIL | 05 | | 1400 | | E43 | | 21.8 | 4 | (AP) | | | | | | | 9461A | | KAND | 05 | 19 | 1015 | N16 | E32 | 05 | 21.8 | | | AX | | 1 | 1 | 2 | | 9461A | 30460 | MWIL | 05 | 19 | 1415 | N15 | E30 | 05 | 21.9 | 4 | (AP) | | | | | | | 9461A | 30460 | MWIL | 05 | 20 | 1415 | N13 | E19 | 05 | 22.0 | 3 | (B) | | | | | | | 9461A | 30474 | MWIL | 05 | 22 | 1400 | N11 | W13 | 05 | 21.6 | 4 | (AF) | | | | | | | 9476<br>9476 | | HOLL<br>KAND | 05<br>05 | | 1329<br>1330 | | W48<br>W48 | | 22.9<br>22.9 | | Α | AXX<br>BXO | 10 | 2<br>2 | 3<br>3 | 3<br>3 | | 9476<br>9476 | 30481 | MWIL | 05 | | 1430 | | W40<br>W49 | | 22.8 | 4 | (B) | BAU | | 2 | 3 | 3 | | 9476 | 30401 | LEAR | 05 | | 0027 | | W56 | | 22.7 | 7 | В | вхо | 20 | 3 | 3 | 2 | | 9476 | | SVTO | 05 | | 0515 | | W58 | | 22.8 | | Ā | HRX | 10 | 1 | 1 | 3 | | 9476 | | KAND | 05 | | 0800 | | W61 | | 22.6 | | | AX | | 1 | 1 | 3 | | 9476 | | RAMY | 05 | | 1220 | | W63 | | 22.7 | | Α | HSX | 20 | 1 | 1 | 3 | | 9476 | 30481 | MWIL | 05 | | 1400 | | W65 | | 22.6 | P | (A | | | | | | | 9476 | | LEAR | 05 | | 0025 | | <b>W</b> 70 | | 22.6 | | Α | AXX | 20 | 1 | 1 | 2 | | 9462 | | SVTO | 05 | | 0947 | | E78 | | 23.4 | | Α | нах | 60 | 1 | 3 | 2 | | 9462 | | KAND | 05 | | 1045 | | E82 | | 23.7 | | _ | HA | | 1 | 2 | 4 | | 9462 | 70//4 | HOLL | 05 | | 1345 | | E79 | | 23.6 | - | A | HAX | 20 | 1 | 2 | 3 | | 9462 | 30461 | MWIL | 05 | | 1400 | | E78 | | 23.5 | 5 | AP | HAV | 110 | 1 | | 2 | | 9462<br>9462 | | VORO | 05<br>05 | | 0304<br>0640 | | E72<br>E69 | | 23.6<br>23.5 | | | HAX<br>HS | 110 | 2 | 3 | 3 | | 9462 | | KAND<br>SVTO | 05 | | 0840 | | E68 | | 23.6 | | Α | HSX | 50 | 1 | 2 | 2 | | 9462 | | RAMY | 05 | | 1340 | | E67 | | 23.7 | | В | DSO | 80 | 2 | 2 | 2 | | 9462 | | HOLL | | 18 | 1358 | | E68 | | 23.8 | | Ā | HAX | 40 | 1 | 2 | 3 | | 9462 | 30461 | MWIL | 05 | | 1400 | | E66 | | 23.6 | 5 | (AP) | | | • | _ | _ | | 9462 | 50101 | VORO | 05 | | 2247 | | E62 | | 23.7 | | · · · · | HAX | 175 | 1 | | 2 | | 9462 | | SVTO | 05 | | 0931 | | E54 | | 23.5 | | Α | HSX | 70 | 1 | 2 | 2 | | 9462 | | KAND | 05 | 19 | 1015 | | E56 | | 23.7 | | | HS | | 1 | 2 | 2 | | 9462 | | RAMY | 05 | 19 | 1220 | | E53 | 05 | 23.6 | | Α | HSX | 40 | 1 | 2 | 2 | | 9462 | 30461 | MWIL | 05 | | 1415 | | E53 | 05 | 23.6 | 5 | (AP) | | | | | | | 9462 | | HOLL | 05 | 19 | 1720 | N18 | E51 | 05 | 23.6 | | Α | HSX | 40 | 1 | 2 | 3 | | 9462 | | VORO | | 19 | 2115 | | E49 | | 23.6 | | | HAX | 151 | 1 | | 2 | | 9462 | | TACH | | 20 | 0548 | | E44 | | 23.6 | | | HSX | 100 | 1 | 1 | 3 | | 9462 | | LEAR | | 20 | 0745 | | E43 | | 23.6 | | Α | HSX | 80 | 1 | 2 | 2 | | 9462 | | SVTO | | 20 | 1005 | | E43 | | 23.7 | | Ą | HAX | 50 | 1 | 2 | 2 | | 9462 | | RAMY | | 20 | 1405 | | E40 | | 23.6 | _ | Α | HAX | 60 | 1 | 1 | 1 | | 9462 | 30461 | MWIL | | 20 | 1415 | | E40 | | 23.6 | 5 | (AP) | | | | _ | , | | 9462 | | KAND | | 20 | 1425 | | E40 | | 23.6 | | | HS | 40 | 1 | 2 | 4 | | 9462 | | HOLL | | 20 | 1441 | | E41 | | 23.8 | | Α | HAX | 60<br>150 | 1 | 1 | 3 | | 9462 | | TACH | | 21 | 0624 | | E31 | | 23.6 | | | HSX | 150 | 1 | 1 | 3 | | 9462 | | KAND | 05 | | 0650 | | E31 | | 23.6<br>23.6 | | | HS<br>HSX | 50 | 1<br>1 | 2<br>1 | 3<br>1 | | 9462<br>9462 | 30461 | RAMY<br>MWIL | 05 | 21 | 1247<br>1415 | | E27<br>E28 | | 23.7 | 5 | A<br>(BP) | | 70 | 1 | ' | ' | | 9462 | 30471 | MWIL | 05 | | 1415 | | E28 | | 23.7 | 4 | (AF) | | | | | | | 9462 | JUT1 1 | HOLL | 05 | | 1515 | | E28 | | 23.8 | 7 | A | HSX | 70 | 1 | 2 | 2 | | 9462 | | VORO | | 21 | 2324 | | E22 | | 23.6 | | А | HAX | 44 | i | _ | 1 | | 9462 | | LEAR | | 22 | 0025 | | E22 | | 23.7 | | В | CSO | 70 | 3 | 2 | 3 | | 9462 | | TACH | | 22 | 0619 | | E19 | | 23.7 | | | HSX | 110 | 1 | 1 | 4 | | 9462 | | KAND | | 22 | 0950 | | E17 | | 23.7 | | | HA | | 2 | 2 | 3 | | 9462 | 30461 | MWIL | | 22 | 1400 | | E15 | | 23.7 | 5 | (BF) | | | | | | | 9462 | 30471 | MWIL | | 22 | 1400 | | E15 | 05 | 23.7 | 3 | (AF) | | | | | | | 9462 | • | SVTO | | 22 | 1445 | | E15 | 05 | 23.7 | | В | DSO | 70 | 3 | 4 | 2 | | 9462 | | HOLL | | 22 | 1450 | | E13 | 05 | 23.6 | | A | HSX | 100 | 1 | 3 | 4 | | , | | VORO | | 23 | 0002 | | E09 | 05 | 23.7 | | | HAX | 45 | 1 | | 2 | | 9462 | | VUKU | | 23 | | | | | 23.6 | | | | | | 3 | | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0bserva | ation<br>Time | | CMP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------------|---------------|--------------------|--------------------|-----|-----------|------------|-------------------|--------|-----------------|--------| | Group | Group | Sta | Mo Day | | Lat CMD | Mo Day | Н | - | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9462 | | TACH | 05 23 | 0623 | N20 E05 | 05 23.6 | | | HSX | 100 | 1 | 1 | 2 | | 9462 | | KAND | 05 23 | 0830 | N20 E05 | 05 23.7 | | | CSO | 40 | 4<br>1 | 2<br>1 | 1<br>3 | | 9462<br>9462 | | RAMY<br>SVTO | 05 23<br>05 23 | 1232<br>1303 | N19 E04<br>N18 E04 | 05 23.8<br>05 23.8 | | A<br>B | HSX<br>CSO | 60<br>80 | 3 | 4 | 2 | | 9462 | | HOLL | 05 23 | 1330 | N18 E02 | 05 23.7 | | В | CSO | 110 | 3 | 3 | 4 | | 9462 | 30461 | MWIL | 05 23 | 1400 | N19 E01 | 05 23.6 | 5 | (BP) | | | - | _ | - | | 9462 | 30471 | MWIL | 05 23 | 1400 | N24 E02 | 05 23.7 | 3 | (AF) | | | | | | | 9462 | | LEAR | 05 24 | 0025 | N18 W06 | 05 23.6 | | В | CSO | 80 | 2 | 4 | 2 | | 9462 | | TACH | 05 24 | 0553 | N20 W08 | 05 23.6 | | | HSX | 150 | 1 | 1 | 3 | | 9462 | | KAND | 05 24 | 0640 | N19 W06 | 05 23.8 | | _ | HS | | 1 | 2 | 3<br>2 | | 9462 | | SVTO | 05 24 | 0750 | N19 W07 | 05 23.8 | | A | HSX | 80 | 1 | 3<br>1 | 2 | | 9462 | | RAMY | 05 24<br>05 24 | 1115<br>1315 | N19 W09<br>N18 W11 | 05 23.8<br>05 23.7 | | A<br>A | HSX<br>HSX | 40<br>80 | 1<br>1 | 2 | 2 | | 9462<br>9462 | 30461 | HOLL<br>MWIL | 05 24 | 1430 | N19 W12 | 05 23.7 | 5 | (BF) | пэх | 80 | 1 | 2 | _ | | 9462 | 30401 | LEAR | 05 25 | 0120 | N20 W17 | 05 23.7 | , | A | HSX | 40 | 1 | 2 | 3 | | 9462 | | TACH | 05 25 | 0658 | N20 W22 | 05 23.6 | | ^ | HSX | 200 | 1 | 1 | 4 | | 9462 | | KAND | 05 25 | 0950 | N20 W21 | 05 23.8 | | | HS | | 1 | 1 | 5 | | 9462 | | RAMY | 05 25 | 1205 | N20 W22 | 05 23.8 | | Α | HSX | 40 | 1 | 1 | 3 | | 9462 | | HOLL | 05 25 | 1312 | N21 W23 | 05 23.8 | | Α | HSX | 90 | 1 | 2 | 3 | | 9462 | 30461 | MWIL | 05 25 | 1430 | N20 W24 | 05 23.8 | 5 | (AP) | | | _ | | _ | | 9462 | | LEAR | 05 26 | 0029 | N20 W30 | 05 23.7 | | Α | HSX | 50 | 1 | 1 | 1 | | 9462 | | TACH | 05 26 | 0640 | N20 W32 | 05 23.8 | | | HSX | 1175 | 1 | 1 | 4 | | 9462 | | SVTO | 05 26<br>05 26 | 0853<br>1301 | N21 W35<br>N21 W36 | 05 23.7<br>05 23.8 | | A<br>A | HSX<br>HSX | 70<br>50 | 1<br>1 | 3<br>2 | 2<br>2 | | 9462<br>9462 | | RAMY<br>HOLL | 05 26 | 1329 | N21 W36 | 05 23.7 | | A | HAX | 80 | i | 2 | 3 | | 9462 | | KAND | 05 26 | 1330 | N20 W36 | 05 23.8 | | A | HS | 80 | i | 2 | 3 | | 9462 | 30461 | MWIL | 05 26 | 1430 | N20 W37 | 05 23.8 | 5 | (AP) | 0 | | • | _ | _ | | 9462 | 30401 | VORO | 05 26 | 2327 | N19 W42 | 05 23.8 | - | <b></b> | HAX | 62 | 1 | | 3 | | 9462 | | LEAR | 05 27 | 0027 | N20 W42 | 05 23.8 | | Α | HSX | 60 | 1 | 2 | 2 | | 9462 | | SVTO | 05 27 | 0515 | N20 W45 | 05 23.8 | | Α | HSX | 60 | 1 | 2 | 3 | | 9462 | | TACH | 05 27 | 0547 | N19 W45 | 05 23.8 | | | HSX | 70 | 1 | 2 | 2 | | 9462 | | KAND | 05 27 | 0800 | N20 W45 | 05 23.9 | | _ | HS | 40 | 1 | 2 | 3 | | 9462 | 70//4 | RAMY | 05 27 | 1220 | N21 W49 | 05 23.7 | - | A | HSX | 60 | 1 | 2 | 3 | | 9462 | 30461 | MWIL | 05 27<br>05 27 | 1400<br>1720 | N20 W50<br>N22 W51 | 05 23.7<br>05 23.8 | 5 | (AP)<br>A | HSX | 60 | 1 | 2 | 2 | | 9462<br>9462 | | HOLL<br>VORO | 05 27 | 2116 | N20 W54 | 05 23.7 | | ^ | HSX | 105 | i | _ | 2 | | 9462 | | LEAR | 05 28 | 0025 | N20 W56 | 05 23.7 | | Α | HSX | 50 | i | 2 | 2 | | 9462 | | SVTO | 05 28 | 0503 | N19 W57 | 05 23.9 | | Ä | HSX | 40 | 1 | 1 | 3 | | 9462 | | KAND | 05 28 | 0640 | N19 W58 | 05 23.8 | | | HS | | 1 | 2 | 3 | | 9462 | | RAMY | 05 28 | 1233 | N21 W60 | 05 23.9 | | Α | HSX | 60 | 1 | 2 | 3 | | 9462 | 30461 | MWIL | 05 28 | 1430 | N20 W62 | 05 23.9 | 5 | (AP) | | | | | _ | | 9462 | | HOLL | 05 28 | 1500 | N22 W63 | 05 23.8 | | Α | HAX | 80 | 1 | 2 | 3 | | 9462 | | VORO | 05 28 | 2303 | N19 W67 | 05 23.8 | | | HAX | 72<br>50 | 1 | 2 | 2 | | 9462 | | LEAR | 05 29 | 0225 | N20 W69 | 05 23.8<br>05 23.8 | | A | HSX | 50<br>60 | 1<br>1 | 2 | 2<br>2 | | 9462 | | SVTO | 05 29 | 0507 | N19 W71 | 05 23.7 | | A | HSX | 100 | 1 | 2 | 3 | | 9462<br>9462 | | TACH<br>KAND | 05 29<br>05 29 | 0558<br>0810 | N18 W73<br>N21 W72 | 05 23.8 | | | HSX<br>HS | 100 | 1 | 2 | 3 | | 9462 | | RAMY | 05 29 | 1250 | N21 W72 | 05 23.8 | | Α | HSX | 60 | i | 2 | 3 | | 9462 | | HOLL | 05 29 | 1310 | N22 W75 | 05 23.8 | | Â | HAX | 60 | 1 | 2 | 2 | | 9462 | | HOLL | 05 29 | 1310 | N27 W71 | 05 24.0 | | A | AXX | | 1 | 1 | 2 | | 9462 | 30461 | MWIL | 05 29 | 1415 | N20 W75 | 05 23.8 | 4 | (AP) | | | | | | | 9471 | 30470 | MWIL | 05 21 | 1415 | S12 E28 | 05 23.7 | 4 | (BF) | | | | | | | 9471 | 30470 | MWIL | 05 22 | 1400 | S10 E15 | 05 23.7 | 3 | (B) | | | _ | _ | _ | | 9471 | | LEAR | 05 23 | 0622 | S12 E07 | 05 23.8 | | A | AXX | 10 | 1 | 1 | 1 | | 9471 | | SVTO | 05 23 | 1303 | S13 E02 | 05 23.7 | | A | HRX | 10 | 1 | 1 | 2 | | 9471 | 70/70 | HOLL | 05 23 | 1330 | S13 E03 | 05 23.8 | , | A | AXX | | 1 | | 4 | | 9471 | 30470 | MWIL | 05 23 | 1400<br>0025 | S13 E02 | 05 23.7<br>05 23.7 | 4 | (AF)<br>B | вхо | 10 | 2 | 1 | 2 | | 9471<br>9471 | | LEAR<br>KAND | 05 24<br>05 24 | 0640 | S12 W04<br>S13 W06 | 05 23.8 | | ь | BXO | 10 | 2 | i | 3 | | 9471 | | SVTO | 05 24 | 0750 | S14 W08 | 05 23.7 | | Α | AXX | 10 | 2 | ż | 2 | | 9471A | | KAND | 05 18 | 0640 | s33 E76 | 05 24.3 | | | AX | | 1 | | 3 | | 9471A | | HOLL | 05 18 | 1358 | S34 E72 | 05 24.3 | | Α | AXX | | 1 | | 3 | | 9471A | 30463 | MWIL | 05 18 | 1400 | S33 E69 | 05 24.1 | 4 | (AF) | | | | | | | 9471A | | SVTO | 05 19 | 0931 | S33 E59 | 05 24.1 | | A | HRX | 10 | 1 | 1 | 2 | | 9471A | 30463 | MWIL | 05 19 | 1415 | S33 E56 | 05 24.0 | 4 | (AF) | | | _ | _ | _ | | 9471A | | HOLL | 05 19 | 1720 | S34 E57 | 05 24.3 | | A | AXX | 20 | 1 | 1 | 3 | | 9471A | 30463 | MWIL | 05 20 | 1415 | S33 E44 | 05 24.1 | 4 | (AF) | ) | | | | | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0bserv | ation<br>Time | | | CI | MP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------------|---------------|-----|------------|----|--------------|-----|------------|--------------|-------------------|----------|-----------------|--------| | Group | Group | Sta | Mo Day | | Lat | CMD | | Day | H | - | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9471A | | HOLL | 05 20 | 1441 | s31 | E41 | 05 | 23.8 | | Α | AXX | 10 | 1 | 1 | 3 | | 9463 | | KAND | 05 18 | 0640 | N07 | E80 | 05 | 24.3 | | | HS | | 3 | 2 | 3 | | 9463 | | SVTO | 05 18 | 0840 | | E76 | | 24.0 | | Α | HSX | 60 | 1 | 2 | 2 | | 9463 | | RAMY | 05 18 | 1340 | | E78 | | 24.4 | | В | DSO | 40 | 2 | 4 | 2 | | 9463<br>9463 | 30464 | HOLL | 05 18<br>05 18 | 1358<br>1400 | | E79<br>E76 | | 24.5<br>24.3 | 5 | B<br>(BP) | DAO | 50 | 2 | 5 | 3 | | 9463 | 30404 | VORO | 05 18 | 2247 | | E71 | | 24.3 | , | (61) | нкх | 474 | 2 | | 2 | | 9463 | | SVTO | 05 19 | 0931 | | E66 | | 24.3 | | В | DAO | 200 | 3 | 8 | 2 | | 9463 | | KAND | 05 19 | 1015 | | E67 | | 24.4 | | | CAO | | 6 | 7 | 2 | | 9463 | 70111 | RAMY | 05 19 | 1220 | | E64 | | 24.3 | _ | В | DAO | 260 | 4 | 9 | 2 | | 9463<br>9463 | 30464 | MWIL<br>HOLL | 05 19<br>05 19 | 1415<br>1720 | | E64<br>E62 | | 24.4<br>24.4 | 5 | (BP)<br>B | DAO | 220 | 10 | 10 | 3 | | 9463 | | VORO | 05 19 | 2115 | | E61 | | 24.4 | | ь | DKI | 691 | 4 | 8 | 2 | | 9463 | | TACH | 05 20 | 0548 | | E56 | | 24.4 | | | DAI | 370 | 8 | 9 | 3 | | 9463 | | LEAR | 05 20 | 0745 | N08 | E55 | | 24.4 | | В | DAO | 490 | 13 | 8 | 2 | | 9463 | | SVTO | 05 20 | 1005 | | E53 | | 24.4 | | В | EAO | 360 | 14 | 11 | 2 | | 9463 | 70/// | RAMY | 05 20 | 1405 | | E51 | | 24.4 | - | B | EAO | 350 | 1 | 11 | 1 | | 9463<br>9463 | 30464 | MWIL<br>KAND | 05 20<br>05 20 | 1415<br>1425 | | E50<br>E50 | | 24.3 | 5 | (BG) | EKI | | 14 | 13 | 4 | | 9463 | | HOLL | 05 20 | 1441 | | E51 | | 24.4 | | В | EKI | 370 | 18 | 11 | 3 | | 9463 | | TACH | 05 21 | 0624 | | E40 | | 24.3 | | _ | DAI | 586 | 7 | 11 | 3 | | 9463 | | KAND | 05 21 | 0650 | | E41 | | 24.3 | | | EAI | | 22 | 13 | 3 | | 9463 | 70111 | RAMY | 05 21 | 1247 | | E36 | | 24.2 | _ | В | EKI | 430 | 13 | 12 | 1 | | 9463<br>9463 | 30464 | MWIL<br>HOLL | 05 21<br>05 21 | 1415<br>1515 | | E35<br>E35 | | 24.2<br>24.3 | 5 | (BG)<br>BG | EKI | 530 | 26 | 12 | 2 | | 9463<br>9463 | | VORO | 05 21 | 2324 | | E31 | | 24.3 | | ьu | DSO | 244 | 5 | 11 | 1 | | 9463 | | LEAR | 05 22 | 0025 | | E31 | | 24.3 | | BG | EKI | 360 | 33 | 13 | 3 | | 9463 | | TACH | 05 22 | 0619 | N08 | E27 | | 24.3 | | | DAI | 860 | 14 | 11 | 4 | | 9463 | | KAND | 05 22 | 0950 | | E25 | | 24.3 | _ | | EKI | | 42 | 14 | 3 | | 9463 | 30464 | MWIL | 05 22 | 1400 | | E22 | | 24.2 | 5 | (BG) | EKI | EEO | 2/ | 15 | 2 | | 9463<br>9463 | | SVTO<br>HOLL | 05 22<br>05 22 | 1445<br>1450 | | E23<br>E22 | | 24.3<br>24.3 | | B<br>BG | EKI<br>EHI | 550<br>320 | 24<br>31 | 13 | 2<br>4 | | 9463 | | VORO | 05 23 | 0002 | | E17 | | 24.3 | | DG | DKI | 343 | 19 | 11 | 2 | | 9463 | | LEAR | 05 23 | 0622 | | E12 | | 24.2 | | В | EHI | 420 | 25 | 14 | 1 | | 9463 | | TACH | 05 23 | 0623 | | E13 | 05 | 24.2 | | | EAI | 1031 | 8 | 13 | 2 | | 9463 | | KAND | 05 23 | 0830 | | E12 | | 24.2 | | _ | EKI | 7/0 | 18 | 15 | 1 | | 9463 | | RAMY | 05 23 | 1232<br>1303 | | E10 | | 24.3<br>24.3 | | В | EHI | 740<br>700 | 13<br>21 | 14<br>16 | 3<br>2 | | 9463<br>9463 | | SVTO<br>HOLL | 05 23<br>05 23 | 1330 | | E10<br>E09 | | 24.2 | | B<br>B | FKI<br>EKI | 780<br>780 | 56 | 15 | 4 | | 9463 | 30464 | MWIL | 05 23 | 1400 | | E08 | | 24.2 | 6 | (BG) | LKI | 700 | | | • | | 9463 | | LEAR | 05 24 | 0025 | | E04 | | 24.3 | | В | EKI | 630 | 32 | 14 | 2 | | 9463 | | TACH | 05 24 | 0553 | | W02 | | 24.1 | | | DAI | 1322 | 17 | 8 | 3 | | 9463 | | KAND | 05 24 | 0640 | | E00 | | 24.3 | | | FKO | (70 | 26 | 16 | 3 | | 9463<br>9463 | | SVTO<br>RAMY | 05 24<br>05 24 | 0750<br>1115 | | W02 | | 24.2<br>24.2 | | B<br>B | FKI<br>FKI | 670<br>680 | 18<br>21 | 16<br>16 | 2<br>2 | | 9463 | | HOLL | 05 24 | 1315 | | W04 | | 24.2 | | В | FKI | 700 | 28 | 16 | 2 | | 9463 | 30464 | MWIL | 05 24 | 1430 | | W06 | | 24.1 | 6 | (D) | | . • • | | | _ | | 9463 | | LEAR | 05 25 | 0120 | | W11 | | 24.2 | | В | EKI | 440 | 26 | 15 | 3 | | 9463 | | TACH | 05 25 | 0658 | | W16 | | 24.1 | | | DAI | 919 | 11 | 10 | 4 | | 9463 | | KAND | 05 25 | 0950 | | W16 | | 24.2 | | | FKO | /70 | 23 | 16 | 5 | | 9463<br>9463 | | RAMY<br>HOLL | 05 25<br>05 25 | 1205<br>1312 | | W17 | | 24.2<br>24.2 | | B<br>BG | EK0<br>EKI | 470<br>540 | 17<br>36 | 15<br>13 | 3<br>3 | | 9463 | 30464 | MWIL | 05 25 | 1430 | | W19 | | 24.2 | 6 | (BG) | | 740 | 30 | 13 | , | | 9463 | 50.0. | LEAR | 05 26 | 0029 | | W25 | | 24.1 | | BG | EKO | 430 | 17 | 12 | 1 | | 9463 | | TACH | 05 26 | 0640 | N08 | W28 | 05 | 24.2 | | | DAO | 120 | 6 | 9 | 4 | | 9463 | | SVTO | 05 26 | 0853 | | W29 | | 24.2 | | В | EKO | 560 | 15 | 14 | 2 | | 9463 | | RAMY | 05 26 | 1301 | | W32 | | 24.1 | | В | EK0 | 360<br>450 | 4<br>34 | 12<br>13 | 2<br>3 | | 9463<br>9463 | | HOLL<br>KAND | 05 26<br>05 26 | 1329<br>1330 | | W33<br>W32 | | 24.1<br>24.2 | | BG | EK I<br>EK O | 650 | 34<br>18 | 13<br>14 | 3 | | 9463 | 30464 | MWIL | 05 26 | 1430 | | W32 | | 24.1 | 6 | (BG) | | | ,0 | 1-7 | , | | 9463 | 23134 | VORO | 05 26 | | | W38 | | 24.1 | - | (50) | DKI | 394 | 6 | 11 | 3 | | 9463 | | LEAR | 05 27 | 0027 | N08 | W37 | 05 | 24.2 | | BG | EKI | 460 | 19 | 13 | 2 | | 9463 | | SVTO | 05 27 | | | W38 | | 24.4 | | BG | FKI | 560 | 21 | 18 | 3 | | 9463 | | TACH | 05 27 | | | W41 | | 24.2 | | | DSO | 561 | 4 | 11<br>13 | 2<br>3 | | 9463<br>9463 | | KAND<br>RAMY | 05 27<br>05 27 | | | W41<br>W44 | | 24.2<br>24.2 | | BG | EKO<br>EKO | 400 | 5<br>9 | 13<br>14 | 3 | | | | | | | | | | | , | | | 700 | • | | - | | 9463 | 30464 | MWIL | 05 27 | 1400 | NO8 | W47 | いっ | 24.0 | 6 | (B) | | | | | | MAY | NOAA/ | Mt | | 0bser | vation | | | | | _ | Corrected | | Long. | | |--------------|--------|--------------|----------------|----------------|--------------------|----------------|----------|-----------|---------------|---------------------|---------------|--------------|-----------------------| | USAF | Wilson | C+- | Ma Da | Time<br>y (UT) | Lat CMD | CMP<br>Mo. Dov | Max<br>H | Mag | Spot<br>Class | Area<br>(10-6 Hemi) | Spot<br>Count | Extent (Deg) | Qual | | Group | Group | Sta | MO D | iy (UI) | Lat CMD | Mo Day | п | Class | Class | (10-6 Hellit) | Count | (Deg) | - Gua | | 9463 | | VORO | 05 27 | | N09 W50 | | | | DKO | 517 | 3 | 11 | 2 | | 9463 | | LEAR | 05 28 | | N07 W51 | 05 24.2 | | BG | EKI | 360<br>430 | 18<br>7 | 13<br>14 | 2 | | 9463<br>9463 | | SVTO<br>KAND | 05 28<br>05 28 | | NO8 W54 | | | В | EHO<br>CKO | 430 | 4 | 13 | 3<br>3 | | 9463 | | RAMY | 05 28 | | NO9 W57 | | | BG | EHO | 430 | 4 | 14 | 3 | | 9463 | 30464 | MWIL | 05 28 | | NO8 W61 | 05 24.0 | 5 | (BP) | | ,50 | • | • • | _ | | 9463 | | HOLL | 05 28 | | N09 W61 | 05 24.0 | | В | EKO | 440 | 12 | 13 | 3 | | 9463 | | VORO | 05 28 | | NO7 W70 | | | | HKX | 521 | 1 | | 2 | | 9463 | | LEAR | 05 29 | | N07 W66 | | | В | CKO | 300 | 5 | 14 | 2 | | 9463 | | SVTO | 05 29 | | N06 W72 | | | A | HKX | 240<br>755 | 1<br>2 | 5<br>12 | 2<br>2<br>2<br>3<br>3 | | 9463<br>9463 | | TACH<br>KAND | 05 29<br>05 29 | | NO6 W68<br>NO8 W75 | | | | CSO<br>HS | 355 | 1 | 3 | 3 | | 9463 | | RAMY | 05 29 | | NOS W76 | | | Α | ННХ | 330 | i | 3 | 3 | | 9463 | | HOLL | 05 29 | | N09 W78 | | | Ä | HKX | 300 | 1 | 4 | 2 | | 9463 | 30464 | MWIL | 05 29 | 1415 | N07 W78 | 05 23.7 | 5 | (AP) | | | | | | | 9479 | 30478 | MWIL | 05 24 | 1430 | N28 W02 | 05 24.4 | 3 | (AF) | | | | | | | 9479 | 30478 | MWIL | 05 25 | | N28 W16 | | 4 | (AF) | | | | | | | 9479 | 30478 | MWIL | 05 26 | | N29 W31 | | 3 | (AF) | | | | | | | 9479 | 30478 | MWIL | 05 27 | | N26 W36 | | 4 | (AP) | ***** | 40 | _ | _ | 7 | | 9479<br>9479 | | SVTO | 05 28<br>05 28 | | N25 W43<br>N24 W44 | | | Α | AXX<br>BXO | 10 | 2<br>2 | 2<br>1 | 3<br>3 | | 9479<br>9479 | | KAND<br>Ramy | 05 28 | | N24 W44 | | | В | DSO | 30 | 2 | 3 | 3 | | 9479 | 30478 | MWIL | 05 28 | | N25 W49 | | 4 | (B) | | 30 | - | • | - | | 9479 | | HOLL | 05 28 | | N26 W48 | | | В | CSO | 50 | 4 | 3 | 3 | | 9479 | | VORO | 05 28 | | N25 W51 | | | | HAX | 38 | 2 | | 2 | | 9479 | | LEAR | 05 29 | | N25 W57 | | | В | BXO | 10 | 3 | 1 | 2 | | 9479 | | SVTO | 05 29<br>05 29 | | N25 W57<br>N26 W58 | | | Α | AXX | | 1<br>1 | 1 | 2 | | 9479<br>9479 | 30478 | KAND<br>MWIL | 05 29 | | N25 W62 | | 4 | (B) | AX | | ' | 1 | 3 | | 9466 | 30465 | MWIL | 05 18 | 3 1400 | S09 E84 | 05 24.9 | 4 | AP | | | | | | | 9466 | 30403 | RAMY | 05 19 | | S08 E70 | | 7 | A | HSX | 50 | 1 | 2 | 2 | | 9466 | 30465 | MWIL | 05 19 | | S09 E69 | | 4 | (AP) | | | | | | | 9466 | 30465 | MWIL | 05 20 | | S09 E56 | | 4 | (AP) | | | | | | | 9466 | | KAND | 05 20 | | S04 E59 | 05 25.0 | | | CSO | | 2 | 3 | 4 | | 9466<br>9466 | 30465 | KAND | 05 2° | | S04 E50<br>S09 E42 | | 4 | (AP) | HS | | 2 | 2 | 3 | | 9466 | 30465 | MWIL | 05 2 | | S02 E44 | | 4 | A | HSX | 30 | 2 | 2 | 2 | | 9466 | | LEAR | 05 2 | | S04 E39 | | | Â | AXX | 10 | 3 | 1 | 3 | | 9466 | | KAND | 05 2 | | S05 E35 | | | | BXO | | 4 | 4 | 3 | | 9466 | 30465 | MWIL | 05 27 | | S09 E29 | | 4 | (AP) | | | | | | | 9466 | | HOLL | 05 27 | | S01 E31 | | | A | AXX | 10 | 3 | 1 | 4 | | 9466 | | LEAR | 05 23 | | S04 E23 | | | В | BSO | 10 | 2<br>7 | 1<br>2 | 1<br>4 | | 9466<br>9466 | 30465 | HOLL<br>MWIL | 05 23<br>05 23 | | S04 E19<br>S10 E16 | | 5 | A<br>(AP) | AXX | 20 | ′ | 2 | 4 | | 9466 | 30403 | LEAR | 05 2 | | S06 E10 | | , | В | DAO | 50 | 9 | 5 | 2 | | 9466 | | KAND | 05 24 | | S04 E11 | | | _ | CAI | | 9 | 4 | 3 | | 9466 | | SVTO | 05 24 | 0750 | S05 E09 | | | В | DAO | 50 | 4 | 4 | 2 | | 9466 | | HOLL | 05 24 | | S05 E06 | | | В | CAO | 70 | 7 | 3 | 2 | | 9466 | 30465 | MWIL | 05 24 | | S10 E02 | | 3 | (AP) | | | 7 | 7 | r | | 9466<br>9466 | | KAND | 05 2!<br>05 2! | | S03 W04 | | | Þ | CSO<br>CSO | 20 | 3<br>5 | 3<br>3 | 5<br>3 | | 9466<br>9466 | | RAMY<br>HOLL | 05 2 | | S06 W07 | | | B<br>B | CSO | 30 | 7 | 3 | 3 | | 9466 | | LEAR | 05 2 | | S05 W13 | | | В | CRO | 10 | 2 | 3 | 1 | | 9466 | | SVTO | 05 2 | | S05 W17 | 05 25.1 | | В | вхо | 20 | 5 | 4 | 2 | | 9466 | | HOLL | 05 2 | | S04 W19 | | | В | вхо | 10 | 4 | 5 | 3 | | 9466 | | KAND | 05 2 | 5 1330 | S05 W19 | 05 25.1 | | | вхо | | 6 | 5 | 3 | | 9464 | | TACH | 04 2 | | S06 E34 | | | _ | DSO | 95<br>40 | 2 | 3 | 4 | | 9464 | | SVTO | 05 19 | | S11 E76<br>S08 E71 | | | В | CRO | 60 | 2<br>1 | 8<br>1 | 2<br>2 | | 9464<br>9464 | | KAND<br>RAMY | 05 1° | | S10 E70 | | | Α | HR<br>AXX | 10 | 1 | 1 | 2 | | 9464 | | HOLL | 05 1 | | S10 E72 | | | В | CAO | 110 | 3 | 11 | 3 | | 9464 | | TACH | 05 2 | | S09 E60 | | | - | AXX | 10 | 1 | 1 | 3 | | 9464 | | LEAR | 05 2 | 0745 | S08 E63 | 05 25.0 | | В | DAO | 30 | 6 | 8 | 2 | | 9464 | | SVTO | 05 2 | | S07 E58 | | | В | DAO | 50 | 4 | 6 | 2 | | 9464 | 70//7 | RAMY | 05 2 | | S07 E57 | | | B | DSO | 40 | 4 | 6 | 1 | | 9464 | 30467 | MWIL | 05 2 | 1415 | S04 E58 | 05 24.9 | 4 | (BP) | | | | | | | | | | | | | | | | | | | | | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0bs | erva | ation<br>Time | | - | CN | AP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------|----------|---------------|------------|------------|----|--------------|-----|------|-----------|-------------------|--------|-----------------|--------| | Group | Group | Sta | Мо | Day | (UT) | Lat | CMD | | "<br>Day | Н | - | | (10-6 Hemi) | Count | (Deg) | Qual | | 9464 | | KAND | 05 | | 1425 | s09 | E56 | | 24.8 | | | HS | | 1 | 2 | 4 | | 9464 | | HOLL | 05 | | 1441 | | E58 | | 25.0 | | В | DSO | 60 | 3 | 5 | 3 | | 9464 | | TACH | 05 | | 0624 | | E48 | | 24.9 | | | CSO | 105 | 2 | 4 | 3 | | 9464 | | KAND | 05 | | 0650 | | E47 | | 24.8 | | | HR | | 1 | 1 | 3 | | 9464 | | RAMY | 05 | | 1247 | | E44 | | 24.8 | | В | DSO | 40 | 2 | 6 | 1 | | 9464 | 30467 | MWIL | 05 | | 1415 | | E46 | | 25.0 | 4 | (BP) | | 40 | | | _ | | 9464 | | HOLL | 05 | | 1515 | | E41 | | 24.7 | | A | AXX | 10 | 1 | 1 | 2 | | 9464 | | VORO | 05 | | 2324 | | E36 | | 24.7 | | | AXX | 29 | 1 | 4 | 1 | | 9464 | | LEAR | 05 | | 0025 | | E36<br>E32 | | 24.7 | | Α | HSX | 10 | 1<br>2 | 1<br>1 | 3<br>3 | | 9464 | 70//7 | KAND | 05<br>05 | | 0950<br>1400 | | E32 | | 24.8<br>25.0 | 4 | (BP) | HA | | 2 | ' | 3 | | 9464<br>9464 | 30467 | MWIL | 05 | | 1445 | | E28 | | 24.7 | 4 | A | HSX | 10 | 1 | 1 | 2 | | 9464 | | SVTO<br>HOLL | 05 | | 1450 | | E28 | | 24.7 | | Â | AXX | 10 | i | i | 4 | | 9464 | | VORO | | 23 | 0002 | | E23 | | 24.7 | | ^ | AXX | 24 | i | ' | 2 | | 9464 | | LEAR | 05 | | 0622 | | E20 | | 24.8 | | Α | HSX | 10 | 1 | 1 | 1 | | 9464 | | TACH | | 23 | 0623 | | E23 | | 25.0 | | ^ | BXI | 27 | 3 | 8 | ż | | 9464 | | RAMY | 05 | | 1232 | | E19 | | 24.9 | | В | вхо | 20 | 3 | 5 | 3 | | 9464 | | SVTO | | 23 | 1303 | | E16 | | 24.7 | | Ā | HSX | 10 | 1 | 1 | 3<br>2 | | 9464 | | HOLL | 05 | | 1330 | | E16 | | 24.8 | | Ä | AXX | 10 | 3 | i | 4 | | 9464 | 30467 | MWIL | 05 | | 1400 | | E21 | | 25.1 | 5 | (BP) | 7.7.7. | | • | • | • | | 9464 | 30401 | LEAR | 05 | | 0025 | | E10 | | 24.8 | - | В | BXO | 10 | 2 | 1 | 2 | | 9464 | | TACH | 05 | | 0553 | | E07 | | 24.8 | | - | CAO | 100 | 3 | 3 | 3 | | 9464 | | KAND | . 05 | | 0640 | | E07 | | 24.8 | | | AX | | 2 | 2 | 3 | | 9464 | | SVTO | | 24 | 0750 | | E06 | | 24.8 | | Α | HRX | 10 | 1 | 1 | 3<br>2 | | 9464 | | RAMY | 05 | | 1115 | | E06 | | 24.9 | | В | CAO | 50 | 6 | 7 | 2<br>2 | | 9464 | | HOLL | 05 | 24 | 1315 | s09 | E03 | 05 | 24.8 | | Α | AXX | | 1 | | 2 | | 9464 | 30467 | MWIL | 05 | 24 | 1430 | S05 | E06 | 05 | 25.0 | 4 | (BP) | | | | | | | 9464 | | LEAR | 05 | 25 | 0120 | S03 | E01 | 05 | 25.1 | | В | CRO | 10 | 3 | 3 | 3 | | 9464 | | TACH | 05 | 25 | 0658 | | W05 | | 24.9 | | | AR | 35 | 2 | 2 | 4 | | 9464 | | RAMY | 05 | 25 | 1205 | S06 | W07 | | 25.0 | | В | CSO | 20 | 5 | 3 | 3 | | 9464 | 30467 | MWIL | 05 | 25 | 1430 | | 80W | | 25.0 | 4 | (B) | | | | | | | 9464 | | TACH | | 26 | 0640 | | W16 | | 25.1 | | | BRO | 8 | 3 | 2 | 4 | | 9464 | | RAMY | | 26 | 1301 | | W20 | | 25.0 | | В | BXO | 36 | 3 | 12 | 2 | | 9464 | 30467 | MWIL | | | 1430 | | W21 | | 25.0 | 4 | (BG) | | | | | | | 9464 | 30467 | MWIL | | 27 | 1400 | | W36 | | 24.9 | 3 | (AP) | | | _ | | - | | 9464 | | TACH | 05 | 29 | 0558 | S04 | W59 | 05 | 24.8 | | | AXX | 10 | 1 | 1 | 3 | | 9465 | 30466 | MWIL | | 19 | 1415 | | E81 | | 25.7 | 4 | (AP) | | F0 | 7 | 0 | 2 | | 9465 | | LEAR | | 20 | 0745 | | E68 | | 25.5 | | В | DAO | 50<br>70 | 3 | 9 | 2 | | 9465 | | SVTO | | 20 | 1005 | | E71 | | 25.7 | | В | EAO | 30 | 4 | 12 | 2 | | 9465 | 70/// | RAMY | | 20 | 1405 | | E70 | | 25.8 | , | В | ES0 | 80 | 4 | 12 | 1 | | 9465 | 30466 | MWIL | | 20 | 1415 | | E66 | | 25.5 | 4 | (BP) | | | 7 | 7 | | | 9465 | | KAND | | 20 | 1425 | | E67 | | 25.6<br>25.8 | | ь | HS<br>Dao | 50 | 3<br>4 | 3<br>10 | 4<br>3 | | 9465 | | HOLL | | 20<br>21 | 1441<br>0650 | | E69 | | | | В | | 50 | 4 | 3 | 3 | | 9465 | | KAND | | | 1247 | | E57<br>E57 | | 25.6<br>25.8 | | В | AX<br>DSO | 150 | 3 | 10 | 1 | | 9465 | 70/// | RAMY | | 21 | | | E55 | | 25.7 | 4 | (BP) | | 150 | , | 10 | 1 | | 9465<br>9465 | 30466 | MWIL<br>HOLL | | 21<br>21 | 1415<br>1515 | 511<br>608 | E51 | 05 | 25.4 | 4 | A | HSX | 50 | 5 | 3 | 2 | | 9465 | | LEAR | | 22 | 0025 | | E46 | | 25.5 | | В | CSO | 40 | 6 | 5 | 3 | | 9465 | | KAND | | 22 | 0950 | | E42 | | 25.6 | | ь | вхо | 40 | 8 | 3 | 3 | | 9465 | 30466 | MWIL | | 22 | 1400 | | E41 | | 25.7 | 4 | (BP) | | | J | • | • | | 9465 | 30400 | SVTO | | 22 | 1445 | | E37 | 05 | 25.4 | 7 | В | cso | 40 | 6 | 11 | 2 | | 9465 | | HOLL | | 22 | 1450 | | E39 | | 25.5 | | В | CSO | 30 | 5 | 3 | 4 | | 9465 | | LEAR | | 23 | 0622 | | E28 | | 25.4 | | В | BSO | 10 | 3 | 2 | 1 | | 9465 | | RAMY | | 23 | 1232 | | E25 | | 25.4 | | Ā | HSX | 50 | 1 | 2 | 3 | | 9465 | | SVTO | | 23 | 1303 | | E20 | 05 | 25.0 | | В | CRO | 10 | 3 | 3 | 2 | | 9465 | | HOLL | | 23 | 1330 | | E24 | | 25.4 | | В | BXO | 10 | 6 | 3 | 4 | | 9465 | 30477 | MWIL | | 23 | 1400 | | E24 | | 25.4 | 4 | (AP) | | | _ | | | | 9465 | 30466 | MWIL | | 23 | 1400 | | E27 | | 25.6 | 4 | (B) | | | | | | | 9465 | | LEAR | | 24 | 0025 | | E20 | | 25.5 | • | B | вхо | 10 | 4 | 3 | 2 | | 9465 | | KAND | | 24 | 0640 | | E18 | | 25.6 | | | AX | | 5 | 2 | 3 | | 9465 | | SVTO | | 24 | 0750 | | E16 | | 25.5 | | Α | AXX | 10 | 2 | 2 | 2 | | 9465 | | RAMY | | 24 | 1115 | | E21 | | 26.0 | | Ä | HSX | 60 | 1 | 2 | 2 | | 9465 | | HOLL | | 24 | 1315 | | E15 | | 25.7 | | В | ВХО | 10 | 8 | 6 | 2 | | 9465 | 30466 | MWIL | | 24 | 1430 | | E14 | | 25.7 | 3 | (AF) | | | | | | | 9465 | | LEAR | | 25 | 0120 | | E13 | | 26.0 | - | В | вхо | 10 | 5 | 2 | 3 | | 9465 | | KAND | | 25 | 0950 | | E06 | | 25.9 | | - | AX | | 3 | 1 | 5 | | | | | | 25 | 1205 | | E04 | | 25.8 | | В | вхо | 10 | 6 | 3 | 3 | | 9465 | | RAMY | UD | رے | 1200 | 0,0 | | | | | | | | | _ | | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0bserv | ation<br>Time | Min. | CMP | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|----------------|---------------|--------------------|--------------------|-----|------|-----------|-------------------|--------|-----------------|-------------| | Group | Group | Sta | Mo Day | | Lat CMD | Mo Day | Н | | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9465 | 30466 | MWIL | 05 25 | 1430 | S10 E01 | 05 25.7 | 4 | (B) | | | | | | | 9465 | | LEAR | 05 26 | 0029 | S10 W05 | 05 25.6 | | В | CRO | 10 | 3 | 3 | 1 | | 9465 | | SVTO | 05 26 | 0853 | S10 W10 | 05 25.6 | | В | CRO | 20 | 6 | 6 | 2 | | 9465 | | RAMY | 05 26 | 1301 | S11 W13 | 05 25.6 | | В | CSO | 30 | 2 | 5 | 2 | | 9465 | | HOLL | 05 26 | 1329 | s10 W13 | 05 25.6 | | В | BXO | 10 | 7 | 6 | 3 | | 9465 | | KAND | 05 26 | 1330 | S10 W11 | 05 25.7 | | | BXO | | 12 | 6 | 3 | | 9465 | 30466 | MWIL | 05 26 | 1430 | S11 W13 | 05 25.6 | 4 | (B) | | | | | _ | | 9465 | | LEAR | 05 27 | 0027 | S11 W18 | 05 25.7 | | В | BXO | 20 | 6 | 6 | 2 | | 9465 | | SVTO | 05 27 | 0515 | S10 W23 | 05 25.5 | | В | вхо | 20 | 7 | 9 | 3 | | 9465 | | KAND | 05 27 | 0800 | S10 W23 | 05 25.6 | | _ | BXO | | 4 | 6 | 3 | | 9465 | 70/// | RAMY | 05 27 | 1220 | S11 W28 | 05 25.4 | , | Α . | AXX | | 1 | | 3 | | 9465 | 30466 | MWIL | 05 27 | 1400 | S11 W28 | 05 25.5 | 4 | (B) | UDV | 10 | 1 | 1 | 3 | | 9465 | 70/// | SVTO | 05 28 | 0503 | S09 W37 | 05 25.4<br>05 25.7 | 4 | A | HRX | 10 | ' | • | 3 | | 9465 | 30466 | MWIL | 05 28 | 1430 | s10 W38 | 05 25.1 | 4 | (AF) | | | | | | | 9481 | | RAMY | 05 27 | 1220 | N18 W22 | 05 25.8 | | В | BXO | 10 | 2 | 4 | 3 | | 9481 | 30485 | MWIL | 05 27 | 1400 | N17 W24 | 05 25.7 | 4 | (B) | | | _ | _ | _ | | 9481 | | LEAR | 05 28 | 0025 | N17 W31 | 05 25.7 | | В | BXO | 20 | 3 | 5 | 2 | | 9481 | | SVTO | 05 28 | 0503 | N17 W34 | 05 25.6 | _ | Α | AXX | 10 | 2 | 2 | 3 | | 9481 | 30485 | MWIL | 05 28 | 1430 | N18 W40 | 05 25.5 | 3 | (AP) | | | | | | | 9481 | 30485 | MWIL | 05 30 | 1400 | N17 W64 | 05 25.7 | 4 | (AP) | | | 4 | 4 | 7 | | 9481 | | HOLL | 05 30 | 1400 | N18 W67 | 05 25.5 | | A | AXX | 70 | 1 | 1 | 3 | | 9481 | | LEAR | 05 31 | 0030 | N17 W71 | 05 25.6 | | В | CSO | 30 | 3 | 9 | 3 | | 9481 | | VORO | 05 31 | 0058 | N17 W72 | 05 25.6 | | | CAO | 47 | 3 | 6<br>9 | 2 | | 9481 | | SVTO | 05 31 | 0515 | N17 W75 | 05 25.5<br>05 25.8 | | В | DSO | 80 | 4<br>2 | 1 | 3<br>3<br>3 | | 9481 | | KAND | 05 31 | 0815 | N17 W73 | 05 25.8<br>05 25.7 | | | HS | 50 | 1 | 2 | 3 | | 9481 | 70/0E | TACH | 05 31<br>05 31 | 0845<br>1400 | N17 W75<br>N18 W78 | 05 25.7 | 4 | (AP) | HSX | 30 | ļ | 2 | 3 | | 9481<br>9481 | 30485 | MWIL<br>HOLL | 05 31 | 1448 | N20 W78 | 05 25.6 | 4 | B | HAX | 60 | 2 | 2 | 3 | | 9481 | | LEAR | 06 01 | 0015 | N18 W85 | 05 25.6 | | В | DAO | 60 | 3 | 3 | 4 | | | | | | | | | | | | | | | | | 9467 | 70//0 | TACH | 05 20 | 0548 | S09 E76 | 05 25.9 | _ | 4151 | BRO | 21 | 3 | 9 | 3 | | 9467 | 30468 | MWIL | 05 20 | 1415 | S07 E74 | 05 26.1 | 5 | (AP) | шс | | 1 | 2 | 4 | | 9467 | | KAND | 05 20 | 1425 | S07 E74 | 05 26.1 | | | HS<br>DSO | 120 | 2 | 9 | 3 | | 9467 | | TACH | 05 21<br>05 21 | 0624<br>0650 | S10 E62<br>S06 E65 | 05 25.9<br>05 26.1 | | | HA | 120 | 1 | 2 | 3 | | 9467<br>9467 | 30468 | KAND<br>MWIL | 05 21<br>05 21 | 1415 | S07 E60 | 05 26.1 | 5 | (AP) | пА | | • | _ | , | | 9467 | 30400 | HOLL | 05 21 | 1515 | S07 E50 | 05 26.0 | , | A | HAX | 60 | 1 | 1 | 2 | | 9467 | | VORO | 05 21 | 2324 | S07 E54 | 05 26.0 | | ^ | HRX | 56 | i | • | 1 | | 9467 | | LEAR | 05 22 | 0025 | S07 E55 | 05 26.1 | | Α | HAX | 60 | i | 2 | 3 | | 9467 | | TACH | 05 22 | 0619 | S08 E49 | 05 25.9 | | ^ | DSO | 145 | ż | 3 | 4 | | 9467 | | KAND | 05 22 | 0950 | S06 E49 | 05 26.1 | | | HS | | 1 | 2 | 3 | | 9467 | 30468 | MWIL | 05 22 | 1400 | S09 E47 | 05 26.1 | 5 | (AP) | | | • | _ | | | 9467 | 30100 | SVTO | 05 22 | 1445 | S07 E46 | 05 26.1 | _ | A | HSX | 60 | 1 | 2 | 2 | | 9467 | | HOLL | 05 22 | 1450 | S03 E47 | 05 26.1 | | A | HSX | 60 | 1 | 2 | 4 | | 9467 | | VORO | 05 23 | 0002 | S07 E41 | 05 26.1 | | | HRX | 67 | 3 | | 2 | | 9467 | | LEAR | 05 23 | 0622 | S07 E38 | 05 26.1 | | Α | HSX | 50 | 1 | 2 | 1 | | 9467 | | TACH | 05 23 | 0623 | S06 E37 | 05 26.0 | | | HSX | 110 | 1 | 1 | 2 | | 9467 | | KAND | 05 23 | 0830 | S06 E37 | 05 26.1 | | | HS | | 1 | 2 | 1 | | 9467 | | SVTO | 05 23 | 1303 | S09 E34 | 05 26.1 | | A | HSX | 70 | 1 | 3 | 2 | | 9467 | | HOLL | 05 23 | 1330 | S07 E34 | 05 26.1 | | Α | HSX | 100 | 1 | 2 | 4 | | 9467 | 30468 | MWIL | 05 23 | 1400 | S07 E34 | 05 26.1 | 5 | (BP) | | | | | | | 9467 | | LEAR | 05 24 | 0025 | S07 E28 | 05 26.1 | | Α | HAX | 100 | 1 | 2 | 2 | | 9467 | | TACH | 05 24 | 0553 | S05 E23 | 05 26.0 | | | HSX | 100 | 1 | 1 | 3 | | 9467 | | KAND | 05 24 | 0640 | S07 E25 | 05 26.1 | | | HS | | 1 | 2 | 3 | | 9467 | | SVTO | 05 24 | 0750 | S08 E23 | 05 26.0 | | Α | HSX | 80 | 1 | 3 | 2 | | 9467 | | RAMY | 05 24 | 1115 | S08 E21 | 05 26.0 | | Α | HSX | 60 | 1 | 2 | 2 | | 9467 | | HOLL | 05 24 | 1315 | S07 E21 | 05 26.1 | | Α | HSX | 80 | 1 | 2 | 2 | | 9467 | 30468 | MWIL | 05 24 | 1430 | S08 E21 | 05 26.2 | 5 | (BP) | | | _ | _ | _ | | 9467 | | LEAR | 05 25 | 0120 | S11 E09 | 05 25.7 | | В | BXO | 60 | 5 | 3 | 3 | | 9467 | | TACH | 05 25 | 0658 | S08 E08 | 05 25.9 | | | CAO | 103 | 4 | 4 | 4 | | 9467 | | KAND | 05 25 | 0950 | S06 E10 | 05 26.1 | | | CSO | | 2 | 3 | 5 | | 9467 | | RAMY | 05 25 | 1205 | S07 E08 | 05 26.1 | | Ą | HSX | 30 | 1 | 1 | 3 | | 9467 | | HOLL | 05 25 | 1312 | S07 E06 | 05 26.0 | _ | Α | HSX | 80 | 1 | 2 | 3 | | 9467 | 30468 | MWIL | 05 25 | 1430 | S07 E06 | 05 26.0 | 5 | (AP) | | | _ | | | | 9467 | | LEAR | 05 26 | 0029 | S07 W00 | 05 26.0 | | Α | HSX | 40 | 1 | 1 | 1 | | 9467 | | TACH | 05 26 | 0640 | S09 W06 | 05 25.8 | | | CSI | 93<br>80 | 6 | 7 | 4 | | 9467 | | SVTO | 05 26 | 0853 | \$06 W05 | 05 26.0 | | A | HAX | 80 | 1 | 3 | 2 | | 9467 | | RAMY | 05 26 | 1301 | s07 <b>W</b> 07 | 05 26.0 | | Α | HSX | 40 | 1 | 1 | 2 | MAY | NOAA/<br>USAF | Mt<br>Wilson | | 0b: | serva | ation<br>Time | | | CI | 4P | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|-----|----------|---------------|------------|------------|----|--------------|-----|--------|------------|-------------------|--------|-----------------|--------| | Group | Group | Sta | Мо | Day | (UT) | Lat | CMD | | Day | H | - | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9467 | | HOLL | 05 | 26 | 1329 | s07 | W07 | | 26.0 | | Α | HSX | 80 | 1 | 2 | 3 | | 9467 | | KAND | | 26 | 1330 | | W07 | | 26.0 | | | HS | | 1 | 2 | 3 | | 9467 | 30468 | MWIL | | 26 | 1430 | | 80W | | 26.0 | 5 | (AP) | | | _ | | _ | | 9467 | | VORO | | 26 | 2327 | | W13 | | 26.0 | | _ | HAX | 48 | 1 | _ | 3 | | 9467 | | LEAR | | 27 | 0027 | | W13 | | 26.0 | | A | HSX | 40 | 1 | 2 | 2 | | 9467 | | SVTO | | 27 | 0515 | | W16 | | 26.0 | | Α | HSX | 60 | 1 | 3 | 3 | | 9467 | | TACH | | 27 | 0547 | | W16 | | 26.0 | | | HSX | 80 | 1 | 1 | 2 | | 9467 | | KAND | | 27 | 0800 | | W17 | | 26.0 | | _ | HS | /0 | 1<br>3 | 2 | 3<br>3 | | 9467 | 70//0 | RAMY | | 27 | 1220 | | W22 | | 25.9<br>26.1 | E | B | CSO | 40 | 3 | 8 | 3 | | 9467 | 30468 | MWIL | | 27 | 1400 | | W20 | | 26.1 | 5 | (AP) | UAV | 80 | 1 | 2 | 2 | | 9467<br>9467 | | HOLL | | 27<br>27 | 1720<br>2116 | | W22<br>W25 | | 26.0 | | Α | HAX<br>HAX | 71 | i | _ | 2 | | 9467 | | VORO<br>LEAR | | 28 | 0025 | | W27 | | 26.0 | | Α | HSX | 50 | i | 2 | 2 | | 9467 | | SVTO | | 28 | 0503 | | W29 | | 26.0 | | Â | HSX | 100 | i | 2 | 3 | | 9467 | | KAND | | 28 | 0640 | | W30 | | 26.0 | | ^ | HS | 100 | ż | 1 | 3 | | 9467 | | RAMY | | 28 | 1233 | | W33 | | 26.0 | | Α | HSX | 30 | 1 | i | 3 | | 9467 | 30468 | MWIL | | 28 | 1430 | | W35 | | 26.0 | 4 | (AP) | | 50 | • | • | _ | | 9467 | 30400 | HOLL | | 28 | 1500 | | W35 | | 26.0 | • | A | HAX | 50 | 2 | 2 | 3 | | 9467 | | VORO | | 28 | 2303 | | W40 | | 26.0 | | | HSX | 44 | 1 | _ | 2 | | 9467 | | LEAR | | 29 | 0225 | | W42 | | 25.9 | | Α | HAX | 30 | 1 | 1 | 2 | | 9467 | | SVTO | | 29 | 0507 | | W43 | | 26.0 | | A | HAX | 30 | 1 | 1 | 2 | | 9467 | | TACH | | 29 | 0558 | | W43 | | 26.0 | | | HSX | 60 | 1 | 1 | 3 | | 9467 | | KAND | | 29 | 0810 | \$06 | W44 | 05 | 26.0 | | | HR | | 1 | 1 | 3 | | 9467 | | RAMY | 05 | 29 | 1250 | s06 | W47 | 05 | 26.0 | | Α | HSX | 30 | 1 | 1 | 3 | | 9467 | | HOLL | 05 | 29 | 1310 | S05 | W47 | 05 | 26.0 | | Α | HSX | 60 | 1 | 2 | 2 | | 9467 | 30468 | MWIL | 05 | 29 | 1415 | s07 | W47 | | 26.1 | 5 | (AP) | | | | | | | 9467 | | SVTO | 05 | 30 | 0610 | s07 | W58 | | 25.9 | | Α | HSX | 50 | 1 | 2 | 3 | | 9467 | | TACH | | 30 | 0615 | <b>S06</b> | W58 | | 25.9 | | | HSX | 80 | 1 | 2 | 3 | | 9467 | | KAND | | 30 | 0750 | | W57 | | 26.0 | | | HS | | 2 | 1 | 3 | | 9467 | | RAMY | | 30 | 1205 | | W59 | | 26.1 | | Α | HSX | 20 | 1 | 1 | 3 | | 9467 | | HOLL | | 30 | 1400 | | W61 | | 26.0 | | Α | HSX | 40 | 1 | 2 | 3 | | 9467 | 30468 | MWIL | | 30 | 1400 | | W61 | | 26.0 | 4 | (AP) | | | | _ | _ | | 9467 | | LEAR | | 31 | 0030 | | W68 | | 25.9 | | Α | HSX | 20 | 1 | 2 | 3 | | 9467 | | VORO | | 31 | 0058 | | W68 | | 25.9 | | _ | AXX | 18 | 1 | | 2 | | 9467 | | SVTO | | 31 | 0515 | | W70 | | 26.0 | | A | HSX | 50 | 1 | 1 | 3<br>3 | | 9467 | | KAND | | 31 | 0815 | | W72 | | 25.9 | | | HR | /= | 1 | 1 | 3 | | 9467 | 70//0 | TACH | | 31 | 0845 | | W72 | | 26.0 | , | (40) | HSX | 45 | 1 | 1 | 3 | | 9467 | 30468 | MWIL | | 31<br>31 | 1400 | | W75 | | 26.0<br>25.8 | 4 | (AP) | | 10 | 1 | 1 | 3 | | 9467 | | HOLL | UD | 31 | 1448 | 505 | W77 | 05 | 25.0 | | Α | AXX | 10 | ' | | | | 9468 | | TACH | | 21 | 0624 | | E78 | | 27.1 | | | HSX | 65 | 1 | 2 | 3 | | 9468 | | KAND | | 21 | 0650 | | E77 | | 27.0 | | | CSO | | 3 | 4 | 3 | | 9468 | | RAMY | | 21 | 1247 | | E70 | | 26.8 | | В | DSO | 90 | 3 | 10 | 1 | | 9468 | 30472 | MWIL | | 21 | 1415 | | E70 | | 26.8 | 4 | (AP) | | | _ | _ | _ | | 9468 | | HOLL | | 21 | 1515 | | E69 | | 26.8 | | В | CAO | 60 | 2 | 5 | 2 | | 9468 | | VORO | | 21 | 2324 | | E65 | | 26.8 | | _ | HRX | 69 | 1 | _ | 1 | | 9468 | | LEAR | | 22 | 0025 | | E65 | 05 | 26.9 | | В | CAO | 50 | 3 | 7 | 3 | | 9468 | | TACH | | 22 | 0619 | | E60 | | 26.7 | | | CSO | 102 | 2 | 4 | 4 | | 9468 | 70/70 | KAND | | 22 | 0950 | | E62 | | 27.0 | _ | 4455 | HS | | 2 | 6 | 3 | | 9468 | 30472 | MWIL | | 22 | 1400 | | E57 | | 26.8 | 5 | (AP) | | | | | | | 9468 | 30475 | MWIL | | 22 | 1400 | | E59 | | 27.0 | 4 | (B) | | 00 | e | • | 2 | | 9468 | | SVTO | | 22 | 1445 | | E58 | | 26.9 | | В | DAO | 90 | 5 | 9 | 2<br>4 | | 9468 | | HOLL | | 22 | 1450 | | E58 | | 27.0 | | В | CSO | 60<br>121 | 6<br>5 | 8<br>2 | 2 | | 9468 | | VORO | | 23 | 0002 | | E53 | | 27.0 | | В | CSO | 80 | 11 | 5 | 1 | | 9468 | | LEAR | | 23 | 0622 | | E48 | | 26.9 | | В | DAO | 175 | 4 | 4 | 2 | | 9468 | | TACH | | 23 | 0623 | | E49 | | 26.9 | | | DAI | 175 | 10 | 6 | 1 | | 9468 | | KAND | | 23<br>23 | 0830<br>1232 | | E48<br>E45 | | 26.9<br>26.9 | | В | DAO<br>DSO | 170 | 9 | 8 | 3 | | 9468 | | RAMY | | 23 | 1303 | | E45 | | 26.9 | | | DAI | 140 | 11 | 9 | 2 | | 9468<br>9468 | | SVTO<br>HOLL | | 23 | 1330 | | E45 | | 26.8 | | B<br>B | DAI | 210 | 23 | 8 | 4 | | 9468 | 30472 | MWIL | | 23 | 1400 | | E45 | | 26.9 | 5 | (BG) | | 210 | دے | 3 | 7 | | 9468<br>9468 | J0412 | LEAR | | 24 | 0025 | | E36 | | 26.7 | , | В | DAO | 130 | 20 | 6 | 2 | | 9468 | | TACH | | 24 | 0553 | | E33 | | 26.7 | | 3 | DAI | 295 | 7 | 3 | 3 | | 9468 | | KAND | | 24 | 0640 | | E35 | | 26.9 | | | DAO | _// | 16 | 8 | 3 | | 9468 | | SVTO | | 24 | 0750 | | E33 | | 26.8 | | В | DAI | 130 | 18 | 9 | 2 | | 9468 | | RAMY | | 24 | 1115 | | E31 | | 26.8 | | В | DSI | 120 | 17 | 7 | 2 | | | | HOLL | | 24 | 1315 | | E31 | | 26.9 | | В | DAI | 200 | 25 | 8 | 2 | | 9448 | | | | | | | | | | | _ | | | | - | _ | | 9468<br>9468 | 30472 | MWIL | | 24 | 1430 | NO5 | E30 | 05 | 26.8 | 5 | (BP) | | | | | | MAY | NOAA/ | Mt | | 0bserva | ation | | | | | | Corrected | | Long. | | |-------|--------|------|---------|-------|---------|---------|-----|-------|-------|-------------|------------|--------|------------------| | USAF | Wilson | | | Time | | CMP | Max | Mag | Spot | Area | Spot | Extent | | | Group | Group | Sta | Mo Day | (UT) | Lat CMD | Mo Day | Н | Class | Class | (10-6 Hemi) | Count | (Deg) | Qual | | | | | | | | | | | | | | | | | 9468 | | TACH | 05 25 | 0658 | N06 E19 | 05 26.7 | | | DAI | 195 | 12 | 3 | 4 | | 9468 | | KAND | 05 25 | 0735 | N07 E20 | 05 26.8 | | | DAO | | 15 | 8 | 5<br>3<br>2<br>3 | | 9468 | | RAMY | 05 25 | 1205 | N08 E18 | 05 26.8 | | В | DAO | 100 | 17 | 8 | 3 | | 9468 | | SVTO | 05 25 | 1303 | NO3 E15 | 05 26.7 | | В | DAI | 140 | 11 | 9 | 2 | | 9468 | | HOLL | 05 25 | 1312 | N06 E17 | 05 26.8 | | В | DAI | 100 | 26 | 8 | 3 | | 9468 | 30472 | MWIL | 05 25 | 1430 | N06 E16 | 05 26.8 | 5 | (BP) | | | | | | | 9468 | | LEAR | 05 26 | 0029 | N06 E09 | 05 26.7 | | В | DAO | 80 | 14 | 1 | 1 | | 9468 | | TACH | 05 26 | 0640 | N05 E06 | 05 26.7 | | | DAI | 24 | 11 | 4 | 4 | | 9468 | | SVTO | 05 26 | 0853 | N07 E06 | 05 26.8 | | В | DAO | 160 | 15 | 9 | 2 | | 9468 | | RAMY | 05 26 | 1301 | N06 E04 | 05 26.8 | | В | DAO | 140 | 7 | 6 | 2 | | 9468 | | HOLL | 05 26 | 1329 | N06 E03 | 05 26.8 | | В | DAI | 170 | 23 | 8 | 2<br>3 | | 9468 | | KAND | 05 26 | 1330 | N06 E02 | 05 26.7 | | | DAO | | 16 | 9 | 3 | | 9468 | 30472 | MWIL | 05 26 | 1430 | N06 E02 | 05 26.7 | 4 | (BP) | | | | | | | 9468 | 30412 | VORO | 05 26 | 2327 | NO5 WO3 | 05 26.7 | • | ( , | DSO | 126 | 5 | 4 | 3 | | 9468 | | LEAR | 05 27 | 0027 | NO6 WO3 | 05 26.8 | | В | DAO | 120 | 16 | 8 | 2 | | 9468 | | SVTO | 05 27 | 0515 | NO6 WO6 | 05 26.8 | | В | DAO | 120 | 18 | 9 | 3<br>2<br>3<br>2 | | 9468 | | TACH | 05 27 | 0547 | NO5 WO7 | 05 26.7 | | | DAI | 177 | 5 | 5 | 2 | | 9468 | | KAND | 05 27 | 0800 | NO5 WO7 | 05 26.8 | | | DAO | | 8 | 8 | 3 | | | | | 05 27 | 1220 | NO6 W10 | 05 26.8 | | В | DSO | 100 | 12 | 7 | 3 | | 9468 | 70/70 | RAMY | 05 27 | 1400 | | 05 26.7 | 5 | (BP) | D30 | 100 | 12 | , | , | | 9468 | 30472 | MWIL | | | NO5 W12 | | כ | | 0.40 | /0 | 7 | 6 | 2 | | 9468 | | HOLL | 05 27 | 1720 | NO5 W14 | 05 26.7 | | В | DAO | 40 | | | 2 | | 9468 | | VORO | 05 27 | 2116 | N05 W16 | 05 26.7 | | _ | DAI | 151 | 6 | 4 | 2 | | 9468 | | LEAR | 05 28 | 0025 | N04 W16 | 05 26.8 | | В | DAO | 90 | 1 <u>1</u> | 9 | 2<br>3<br>3 | | 9468 | | SVTO | 05 28 | 0503 | N05 W19 | 05 26.8 | | В | DAO | 100 | 7 | 8 | 3 | | 9468 | | KAND | 05 28 | 0640 | N05 W20 | 05 26.8 | | | DSO | | 3 | 5 | 3 | | 9468 | | RAMY | 05 28 | 1233 | NO5 W23 | 05 26.8 | | В | DSO | 130 | 4 | 7 | 3 | | 9468 | 30472 | MWIL | 05 28 | 1430 | N05 W25 | 05 26.7 | 4 | (BP) | | | | | | | 9468 | | HOLL | 05 28 | 1500 | NO5 W25 | 05 26.7 | | В | DAO | 90 | 11 | 8 | 3 | | 9468 | | VORO | 05 28 | 2303 | NO5 W31 | 05 26.6 | | | CSO | 99 | 2 | 4 | 2 | | 9468 | | LEAR | 05 29 | 0225 | NO4 W32 | 05 26.7 | | В | CSO | 50 | 5 | 8 | 2<br>2<br>2 | | 9468 | | SVTO | 05 29 | 0507 | NO4 W33 | 05 26.7 | | В | DAO | 60 | 5 | 8 | 2 | | 9468 | | TACH | 05 29 | 0558 | NO4 W34 | 05 26.7 | | | CAO | 100 | 3 | 5 | 3 | | 9468 | | KAND | 05 29 | 0810 | NO5 W36 | 05 26.6 | | | CAO | | 3 | 6 | 3 | | 9468 | | RAMY | 05 29 | 1250 | N06 W37 | 05 26.8 | | В | CSO | 80 | 2 | 6 | 3 | | 9468 | | HOLL | 05 29 | 1310 | NO5 W39 | 05 26.6 | | В | DSO | 70 | 3 | 6 | 2 | | 9468 | 30472 | MWIL | 05 29 | 1415 | N05 W39 | 05 26.7 | 5 | (BP) | | | | | | | 9468 | 50 | SVTO | 05 30 | 0610 | N04 W48 | 05 26.7 | - | В | DSO | 120 | 6 | 8 | 3 | | 9468 | | TACH | 05 30 | 0615 | NO5 W51 | 05 26.4 | | - | HSX | 100 | 1 | 2 | 3 | | 9468 | | KAND | 05 30 | 0750 | NO4 W49 | 05 26.7 | | | CAO | | 5 | 8 | 3 | | 9468 | | RAMY | 05 30 | 1205 | NO6 W54 | 05 26.5 | | Α | HAX | 70 | 1 | 2 | 3 | | | 70/72 | | 05 30 | 1400 | NO4 W53 | 05 26.6 | 5 | (BP) | | 10 | | _ | , | | 9468 | 30472 | MWIL | | | | 05 26.5 | ر | | CAO | 110 | 3 | 7 | 3 | | 9468 | | HOLL | 05 30 | 1400 | NO5 W55 | 05 26.5 | | В | | | | 2 | 3 | | 9468 | | LEAR | 05 31 | 0030 | N05 W61 | | | Α | HSX | 40 | 1 | 2 | | | 9468 | | VORO | 05 31 | 0058 | N04 W62 | 05 26.4 | | _ | HAX | 95 | 1 | 40 | 2 | | 9468 | | SVTO | 05 31 | 0515 | N05 W68 | 05 26.1 | | В | DAO | 100 | 2 | 10 | 3 | | 9468 | | KAND | 05 31 | 0815 | NO4 W65 | 05 26.5 | | | HS | | 1 | 2 | 3 | | 9468 | | TACH | 05 31 | 0845 | NO4 W67 | 05 26.3 | | | HSX | 90 | 1 | 1 | 3 | | 9468 | 30472 | MWIL | 05 31 | 1400 | NO5 W69 | 05 26.4 | 4 | (AP) | | | | | | | 9468 | | HOLL | 05 31 | 1448 | N07 W71 | 05 26.3 | | В | HAX | 90 | 1 | 2 | 3 | | 9468 | | LEAR | 06 01 | 0015 | NO6 W75 | 05 26.5 | | Α | HSX | 60 | 1 | 2 | 4 | | 9468 | | VORO | 06 01 | 0444 | N05 W77 | 05 26.5 | | | HAX | 59 | 1 | | 2 | | 9468 | | SVTO | 06 01 | 0520 | N05 W77 | 05 26.6 | | Α | HSX | 60 | 1 | 1 | 2 | | 9468 | | TACH | 06 01 | 0715 | N04 W78 | 05 26.6 | | | HSX | 50 | 1 | 2 | 2 | | 9468 | | KAND | 06 01 | 0845 | N05 W76 | 05 26.8 | | | HA | | 2 | 3 | 4 | | 9468 | | RAMY | 06 01 | 1250 | N08 W80 | 05 26.6 | | Α | HSX | 60 | 1 | 2 | 3 | | 9468 | 30472 | MWIL | 06 01 | 1400 | NO5 W84 | 05 26.4 | 4 | (AP) | | | • | _ | _ | | 9468 | 30412 | HOLL | 06 01 | 1432 | N07 W82 | 05 26.6 | 7 | A | AXX | 20 | 1 | 1 | 3 | | 7400 | | HOLL | 55 51 | 1736 | NOT WOL | 0, 20.0 | | ^ | 77/ | | • | • | - | | 0/77 | | DAMY | 05 26 | 1301 | N11 E10 | 05 27.9 | | D | вхо | 10 | 2 | 3 | 2 | | 9473 | | RAMY | | | N11 E18 | | | В | | 10 | 3 | 3 | 3 | | 9473 | | HOLL | 05 26 | 1329 | N13 E17 | 05 27.8 | | В | BXO | 10 | 3 | 3 | 3 | | 9473 | 70/00 | KAND | 05 26 | 1330 | N12 E17 | 05 27.8 | | /855 | вхо | | 3 | 3 | 3 | | 9473 | 30482 | MWIL | 05 26 | 1430 | N12 E16 | 05 27.8 | | (BF) | | 10 | _ | 2 | - | | 9473 | | LEAR | 05 27 | 0027 | N12 E12 | 05 27.9 | | В | BXO | 10 | 2 | 2 | 2 | | 9473 | | SVTO | 05 27 | 0515 | N13 E09 | 05 27.9 | | A | HSX | 10 | 1 | 1 | 3 | | 9473 | | RAMY | 05 27 | 1220 | N12 E06 | 05 28.0 | | Α | AXX | | 1 | | 3 | | 9473 | 30482 | MWIL | 05 27 | 1400 | N12 E05 | 05 28.0 | | (AF) | | | | | | | 9473 | 30482 | MWIL | 05 29 | 1415 | NO8 W27 | 05 27.6 | 4 | (AF) | | | | | | | | | | | | | | | | | | | | | | 9472 | 30476 | MWIL | 05 22 | 1400 | N13 E78 | 05 28.5 | 4 | (AP) | | | | | | | | | | | | | | | | | | | | | MAY | NOAA/<br>Usaf | Mt<br>Wilson | | 0bse | | ition<br>Time | | | CI | <b>MP</b> | Max | Mag | Spot | Corrected<br>Area | Spot | Long.<br>Extent | | |---------------|--------------|--------------|--------------|----|---------------|------|------------|----|--------------|-----|--------|------------|-------------------|--------|-----------------|--------| | Group | Group | Sta | Mo D | ay | (UT) | Lat | CMD | Мо | Day | Н | Class | Class | (10-6 Hemi) | Count | (Deg) | Qual | | 9472 | | HOLL | 05 2 | | 1450 | | E79 | | 28.6 | | Α | AXX | 30 | 1 | 1 | 4 | | 9472 | | VORO | 05 2 | | 0002 | | E71 | | 28.3 | | _ | HRX | 46 | 1 | , | 2 | | 9472 | | LEAR | 05 2 | | 0622 | | E66 | | 28.2 | | В | CRO | 20 | 3 | 6<br>1 | 1<br>2 | | 9472 | | TACH | 05 2 | | 0623 | | E67 | | 28.3 | | | HSX<br>HSX | 35<br>50 | 1<br>1 | 2 | 3 | | 9472<br>9472 | | RAMY<br>SVTO | 05 2<br>05 2 | | 1232<br>1303 | | E68<br>E66 | | 28.6<br>28.5 | | A<br>A | HSX | 50<br>50 | 1 | 1 | 2 | | 9472 | | HOLL | 05 2 | | 1330 | | E66 | | 28.5 | | Â | HAX | 60 | i | ż | 4 | | 9472 | 30476 | MWIL | 05 2 | | 1400 | | E68 | | 28.7 | 4 | (BP) | | • | • | _ | • | | 9472 | | LEAR | 05 2 | | 0025 | | E58 | | 28.4 | | A | HSX | 40 | 1 | 1 | 2 | | 9472 | | TACH | 05 2 | | 0553 | | E54 | 05 | 28.3 | | | HSX | 40 | 1 | 1 | 3 | | 9472 | | SVTO | 05 2 | 24 | 0750 | N11 | E55 | | 28.5 | | Α | HRX | 50 | 1 | 2 | 2 | | 9472 | | RAMY | 05 2 | | 1115 | | E53 | | 28.5 | | Α | HSX | 30 | 1 | 2 | 2 | | 9472 | | HOLL | 05 2 | | 1315 | | E53 | | 28.5 | | Α | HAX | 40 | 2 | 2 | 2 | | 9472 | 30476 | MWIL | 05 2 | | 1430 | | E54 | | 28.7 | 4 | (B) | | 40 | _ | | - | | 9472 | | LEAR | 05 2 | | 0120 | | E46 | | 28.5 | | В | BXO | 10 | 2 | 1 | 3<br>4 | | 9472 | | TACH | 05 2<br>05 2 | | 0658 | | E41<br>E40 | | 28.4 | | | HSX | 45<br>20 | 1<br>1 | 1<br>1 | 3 | | 9472 | | RAMY | 05 2 | | 1205<br>1312 | | E38 | | 28.5<br>28.4 | | A<br>A | HSX<br>HSX | 10 | 1 | i | 3 | | 9472<br>9472 | 30476 | HOLL<br>MWIL | 05 2 | | 1430 | | E40 | | 28.6 | 4 | (BP) | пэх | 10 | ı | ' | , | | 9472 | 30470 | LEAR | 05 2 | | 0029 | | E33 | | 28.5 | 7 | A | HAX | 20 | 1 | 1 | 1 | | 9472 | | TACH | 05 2 | | 0640 | | E29 | | 28.5 | | | HSX | 45 | 1 | 1 | 4 | | 9472 | | SVTO | 05 2 | | 0853 | | E29 | | 28.5 | | В | CAO | 20 | 2 | 2 | 2 | | 9472 | | RAMY | 05 2 | 26 | 1301 | N12 | E26 | 05 | 28.5 | | Α | AXX | 10 | 2 | 2 | 2 | | 9472 | | HOLL | 05 2 | | 1329 | N13 | E26 | | 28.5 | | Α | HAX | 20 | 3 | 2 | 3 | | 9472 | 30476 | MWIL | 05 2 | | 1430 | | E28 | | 28.7 | 4 | (BP) | | | | | _ | | 9472 | | VORO | 05 2 | | 2327 | | E20 | | 28.5 | | | AXX | 9 | 1 | _ | 3 | | 9472 | | LEAR | 05 2 | | 0027 | | E20 | | 28.5 | | В | BXO | 20 | 4 | 3 | 2 | | 9472 | | SVTO | 05 2 | | 0515 | | E18 | | 28.6 | | Α | AXX | 2 | 2 | 2 | 3 | | 9472 | | TACH | 05 2 | | 0547 | | E23 | | 29.0<br>28.3 | | В | AR<br>CSO | 2<br>20 | 2<br>3 | 2<br>2 | 2 | | 9472<br>9472 | 30476 | RAMY<br>MWIL | 05 2<br>05 2 | | 1220<br>1400 | | E11<br>E20 | | 29.1 | 4 | (B) | CSO | 20 | , | _ | , | | 9472 | 30470 | HOLL | 05 2 | | 1720 | | E08 | | 28.3 | 7 | В | вхо | 20 | 2 | 3 | 2 | | 9472 | | VORO | 05 2 | | 2116 | | E16 | | 29.1 | | | вхо | 13 | 2 | 1 | 2 | | 9472 | | SVTO | 05 2 | | 0503 | | E05 | | 28.6 | | Α | AXX | 10 | 2 | 2 | 3 | | 9472 | 30476 | MWIL | 05 2 | | 1430 | | E11 | 05 | 29.4 | 3 | (AF) | | | | | | | 9472 | | SVTO | 05 2 | | 0507 | N13 | 80W | | 28.6 | | Α | HRX | 10 | 1 | 1 | 2 | | 9472 | | TACH | 05 2 | | 0558 | | W09 | | 28.6 | | | AR | 11 | 1 | 1_ | 3 | | 9472 | | HOLL | 05 2 | | 1310 | | W11 | | 28.7 | | В | BXO | 20 | 4 | 5 | 2 | | 9472 | | HOLL | 05 3 | | 1400 | | W26 | | 28.6<br>28.6 | | A | AXX | | 1<br>1 | 1 | 3<br>3 | | 9472 | | LEAR | 05 3 | ) | 0030 | N 14 | W32 | 00 | 20.0 | | Α | AXX | | 1 | | | | 9483 | | LEAR | 06 0 | | 0015 | | W45 | | 28.6 | | В | DAO | 50 | 6 | 3 | 4 | | 9483 | | VORO | 06 0 | | 0444 | | W49 | | 28.5 | | _ | CAO | 50 | 4 | 3 | 2 | | 9483 | | SVTO | 06 0 | | 0520 | | W48 | | 28.6 | | В | DAO | 60 | 7 | 6 | 2<br>2 | | 9483 | | | 06 0 | | 0715 | | W50 | | 28.5 | | | CAO | 202 | 4<br>7 | 4<br>6 | 4 | | 9483<br>9483 | | KAND<br>Ramy | 06 0<br>06 0 | | 0845<br>1250 | | W50<br>W53 | | 28.6<br>28.6 | | В | DSO<br>DSO | 60 | 5 | 6 | 3 | | 9483 | 30494 | MWIL | 06 ( | | 1400 | | W55 | | 28.4 | 4 | (B) | | 00 | , | J | , | | 9483 | 30474 | HOLL | 06 ( | | 1432 | | W57 | | 28.3 | • | B | DAO | 90 | 9 | 8 | 3 | | 9483 | | VORO | 06 ( | | 2112 | | W59 | | 28.4 | | _ | DAO | 52 | 3 | 6 | 2 | | 9483 | | SVTO | 06 ( | | 0520 | | W64 | | 28.4 | | В | DAO | 60 | 6 | 8 | 3 | | 9483 | | TACH | 06 0 | 02 | 0531 | S23 | W66 | | 28.2 | | | HA | 105 | 2 | 7 | 3 | | 9483 | | RAMY | 06 ( | | 1229 | | W67 | 05 | 28.5 | | В | DSO | 50 | 2 | 7 | 3 | | 9483 | 30494 | MWIL | 06 ( | | 1400 | S23 | W69 | | 28.4 | 4 | (BP) | | | | | | | 9483 | | HOLL | 06 ( | 02 | 1411 | | W69 | | 28.4 | | В | CAO | 70 | 4 | 8 | 4 | | 9483 | | VORO | 06 ( | | 2126 | | W77 | | 28.0 | | | HRX | 32 | 1 | _ | 2 | | 9483 | | LEAR | 06 ( | 03 | 0025 | S22 | W72 | 05 | 28.6 | | В | вхо | 20 | 2 | 8 | 2 | | 9477 | 30483 | MWIL | 05 2 | | 1430 | | E37 | | 29.4 | 3 | (AP) | | 4.4 | | | - | | 9477 | | VORO | 05 2 | | 2327 | | E31 | | 29.3 | | P. | AXX | 11 | 1 | 5 | 3 | | 9477 | | LEAR | 05 2 | | 0027 | | E33 | | 29.5 | | В | BXO | 20<br>40 | 3<br>7 | 5<br>5 | 2<br>3 | | 9477<br>9477 | | SVTO | 05 2<br>05 2 | | 0515<br>0547 | | E30<br>E28 | | 29.5<br>29.3 | | В | DAO<br>BXO | 40<br>9 | 2 | 3 | 2 | | 9477<br>9477 | | TACH<br>KAND | 05 2 | | 0800 | | E29 | | 29.5 | | | CSO | 7 | 6 | 6 | 3 | | 9477 | | RAMY | 05 2 | | 1220 | | E26 | | 29.5 | | В | DSO | 40 | 7 | 6 | 3 | | 9477 | 30483 | MWIL | 05 2 | | 1400 | | E25 | | 29.5 | 4 | (B ) | | | • | _ | _ | | 9477 | | HOLL | 05 2 | | 1720 | | E22 | | 29.4 | • | B | DAO | 40 | 4 | 6 | 2 | | 9477 | | VORO | 05 2 | | 2116 | | E22 | 05 | 29.5 | | | BXI | 31 | 3 | 5 | 2 | | 9477 | | LEAR | 05 2 | | 0025 | | E19 | | 29.4 | | В | CAO | 20 | 7 | 6 | 2 | | | | | | | | | | | | | | | | | | | MAY | USAF<br>Group<br>9477<br>9477<br>9477 | Wilson<br>Group | Sta | Mo Day | Time<br>(UT) | Lat CMD | CMP<br>Mo Day | Max<br>H | Mag | Spot<br>Class | Area | Spot | Extent | | |---------------------------------------|-----------------|--------------|----------------|----------------------|----------------------------|---------------|----------|----------------|---------------|-------------|---------|--------|--------| | 9477 | | | | | | · | | Class | Class | (10-6 Hemi) | Count | (Deg) | Qual | | | | SVTO | 05 28 | 0503 | S15 E17 | | | В | DAO | 30 | 4 | 5 | 3 | | | | KAND | 05 28 | 0640 | S15 E17 | | | | CRO | 30 | 5<br>3 | 6<br>6 | 3<br>3 | | 9477 | 30483 | RAMY<br>MWIL | 05 28<br>05 28 | 1233<br>1430 | S16 E13<br>S15 E12 | | | B<br>(B) | DSO | 30 | 3 | 6 | 3 | | 9477 | 30463 | HOLL | 05 28 | 1500 | S16 E11 | | | В | cso | 40 | 7 | 7 | 3 | | 9477 | | VORO | 05 28 | 2303 | S16 E05 | | | | AXX | 6 | i | • | 2 | | 9477 | | LEAR | 05 29 | 0225 | S16 E02 | | | Α | AXX | | 1 | | 2 | | 9477 | | SVTO | 05 29 | 0507 | S16 E02 | | | A | AXX | | 1 | | 2 | | 9477 | | RAMY | 06 01 | 1250 | S15 W37 | | | В | BXO | | 2 | 1 | 3 | | 9477 | 30495 | MWIL | 06 01 | 1400 | S17 W38 | | | (BP) | | | | _ | _ | | 9477 | | HOLL | 06 01 | 1432 | S16 W38 | | | В | BXO | 10 | 2 | 2 | 3 | | 9477 | | VORO | 06 01 | 2112 | S17 W42 | | | | BXO | 21 | 3<br>6 | 2<br>4 | 2<br>3 | | 9477 | | SVTO | 06 02<br>06 02 | 0520<br>0531 | S17 W46<br>S18 W47 | | | В | CRO<br>Ar | 30<br>3 | 2 | 3 | 3 | | 9477<br>9477 | 30495 | TACH<br>MWIL | 06 02 | 1400 | S17 W51 | | | (BP) | AK | , | _ | 3 | • | | 9477 | 30493 | HOLL | 06 02 | 1411 | s17 w50 | | | В | вхо | 10 | 3 | 3 | 4 | | 9478A | 30479 | MWIL | 05 25 | 1430 | N27 E50 | | | (B) | | | | | | | 9478A | 30479 | MWIL | 05 26 | 1430 | N28 E36 | 05 29.4 | . 4 | (AP) | | | | | | | 9478 | | KAND | 05 22<br>05 23 | 0950 | N13 E85 | | | | HS<br>HR | | 1<br>1 | 1<br>1 | 3<br>1 | | 9478<br>9478 | | KAND<br>KAND | 05 24 | 0830<br>0640 | N13 E68 | | | | HA | | 1 | 2 | 3 | | 9478 | | KAND | 05 25 | 0735 | N13 E42 | | | | HA | | i | 1 | 5 | | 9478 | | KAND | 05 26 | 1330 | N13 E26 | | | | вхо | | 2 | 2 | 5<br>3 | | 9478 | | LEAR | 05 27 | 0027 | N15 E27 | | | В | вхо | 20 | 3 | 2 | 2 | | 9478 | | SVTO | 05 27 | 0515 | N13 E22 | | ) | В | BXO | 20 | 4 | 10 | 3 | | 9478 | | SVTO | 05 27 | 0515 | N14 E25 | | | В | BXO | | 2 | 3 | 3 | | 9478 | | SVTO | 05 27 | 0515 | N16 E28 | | | В | DRO | 10 | 2 | 2 | 3 | | 9478 | | KAND | 05 27 | 0800 | N15 E24 | | | _ | CAO | 40 | 3 | 2 | 3 | | 9478 | | LEAR | 05 28 | 0025 | N15 E13 | | | В | BXO<br>CRO | 10<br>10 | 2<br>2 | 2<br>3 | 2<br>3 | | 9478 | | SVTO | 05 28<br>05 29 | 0503<br>0225 | N12 E15 | | | B<br>A | AXX | 10 | 1 | , | 2 | | 9478<br>9478 | 30487 | LEAR<br>MWIL | 05 29 | 1415 | N13 E07 | | | (BP) | | | • | | _ | | 9478 | 30487 | MWIL | 05 30 | 1400 | N13 W20 | | | (B.) | | | | | | | 9478 | 30487 | MWIL | 05 31 | 1400 | N17 W32 | | | (AF) | | | | | | | 9474 | | HOLL | 05 25 | 1312 | N18 E72 | | | Α | AXX | 10 | 1 | 1 | 3 | | 9474 | 30480 | MWIL | 05 25 | 1430 | N19 E70 | | | (B) | | | | _ | _ | | 9474 | | LEAR | 05 26 | 0029 | N18 E62 | | | Α | HSX | 40 | 1 | 1 | 1 | | 9474 | | SVTO | 05 26 | 0853 | N19 E62 | | | В | DAO | 50 | 2 | 7 | 2 | | 9474 | | RAMY | 05 26 | 1301 | N18 E58 | | | В | BXO | 20<br>20 | 2<br>5 | 3<br>6 | 2<br>3 | | 9474<br>9474 | | HOLL<br>KAND | 05 26<br>05 26 | 1329<br>1330 | N18 E60<br>N20 E58 | | | В | BXO<br>AX | 20 | 3 | 2 | 3 | | 9474 | 30480 | MWIL | 05 26 | 1430 | N20 E58 | | | (B) | | | - | _ | • | | 9474 | 30400 | VORO | 05 26 | 2327 | N19 E57 | | | (,, | AXX | 41 | 2 | | 3 | | 9474 | | LEAR | 05 27 | 0027 | N19 E5 | | | В | CAO | 30 | 3 | 5 | 2 | | 9474 | | SVTO | 05 27 | 0515 | N18 E5 | | | В | DAO | 50 | 5 | 6 | 3 | | 9474 | | TACH | 05 27 | 0547 | N23 E5 | | | | HA | 61 | 2 | 2 | 2 | | 9474 | | KAND | 05 27 | 0800 | N20 E49 | | | | CSO | | 4 | 7 | 3 | | 9474 | 70/00 | RAMY | 05 27 | 1220 | N20 E48 | | | В | DAO | 50 | 6 | 7 | 3 | | 9474 | 30480 | MWIL | 05 27 | 1400 | N20 E46 | | | (B) | | 50 | 5 | 7 | 2 | | 9474 | | HOLL | 05 27<br>05 27 | 1720<br>2116 | N17 E41<br>N19 E41 | | | В | CAO<br>CAI | 171 | 5 | 3 | 2<br>2 | | 9474<br>9474 | | VORO<br>LEAR | 05 27 | 0025 | N20 E4 | | | В | CAO | 30 | 9 | 8 | 2 | | 9474 | | SVTO | 05 28 | 0503 | N19 E3 | | | В | DAO | 70 | 4 | 5 | 3 | | 9474 | | KAND | 05 28 | 0640 | N20 E3 | | | | CSO | | 6 | 4 | 3 | | 9474 | | RAMY | 05 28 | 1233 | N19 E3 | | | В | CSO | 90 | 4 | 8 | 3 | | 9474 | 30480 | MWIL | 05 28 | 1430 | N20 E3 | | | (BP) | ) | | | | | | 9474 | | HOLL | 05 28 | 1500 | N18 E3 | | | В | CAO | 50 | 14 | 8 | 3 | | 9474 | | VORO | 05 28 | 2303 | N20 E2 | | | | HAX | 96 | 5 | _ | 2 | | 9474 | | LEAR | 05 29 | 0225 | N19 E2 | | | В | CAO | 60 | 12 | 7 | 2 | | 9474 | | SVTO | 05 29 | 0507 | N19 E2 | | | В | DAO | 90<br>110 | 8 | 8 | 2<br>3 | | | | TACH | 05 29 | 0558 | N20 E2 | | | | CAI<br>CSO | 110 | 11<br>4 | 5<br>3 | 3 | | 9474 | | KAND | 05 29 | 0810 | N20 E2 | 2 05 31. | | | | | | | , | | 9474 | | | | 1250 | N20 F2 | ገ በ5 31 | 1 | R | กรด | 3በ | 4 | 5 | 3 | | 9474<br>9474 | | RAMY | 05 29 | 1250<br>1310 | N20 E2 | | | B<br>B | DSO<br>CAO | 30<br>60 | 4<br>10 | 5<br>6 | 3<br>2 | | 9474 | 30480 | | | 1250<br>1310<br>1415 | N20 E2<br>N19 E2<br>N20 E2 | 05 31. | 1 | B<br>B<br>(BP) | CAO | 30<br>60 | 4<br>10 | | | MAY 2001 | NOAA/<br>USAF<br>Group | Mt<br>Wilson<br>Group | Sta | Observa<br>Mo Day | Time | Lat CMD | CMP<br>Mo Day | Max<br>H | Mag<br>Class | Spot<br>Class | Corrected<br>Area<br>(10-6 Hemi) | Spot<br>Count | Long.<br>Extent<br>(Deg) | Qual | |------------------------|-----------------------|------|-------------------|------|---------|---------------|----------|--------------|---------------|----------------------------------|---------------|--------------------------|-----------------------| | 9474 | | TACH | 05 30 | 0615 | N20 E08 | 05 30.9 | | | HSX | 30 | 1 | 1 | 3 | | 9474 | | KAND | 05 30 | 0750 | N20 E10 | 05 31.1 | | | CAO | | 8 | 6 | 3<br>3<br>3 | | 9474 | | RAMY | 05 30 | 1205 | N20 E06 | 05 31.0 | | Α | HSX | 10 | 1 | 1 | 3 | | 9474 | 30480 | MWIL | 05 30 | 1400 | N20 E06 | 05 31.0 | 4 | (BP) | | | | | | | 9474 | | HOLL | 05 30 | 1400 | N20 E08 | 05 31.2 | | В | CSO | 30 | 7 | 7 | 3 | | 9474 | | LEAR | 05 31 | 0030 | N20 W02 | 05 30.9 | | В | CSO | 10 | 2 | 1 | 3 | | 9474 | | VORO | 05 31 | 0058 | N20 E01 | 05 31.1 | | | BXI | 18 | 4 | 5 | 2 | | 9474 | | SVTO | 05 31 | 0515 | N20 W04 | 05 30.9 | | Α | HAX | 10 | 1 | 1 | 3 | | 9474 | | KAND | 05 31 | 0815 | N19 W05 | 05 31.0 | | | AX | | 2 | 1 | 3<br>2<br>3<br>3<br>3 | | 9474 | | TACH | 05 31 | 0845 | N21 W03 | 05 31.1 | | | BXO | 38 | 4 | 5 | 3 | | 9474 | 30480 | MWIL | 05 31 | 1400 | N20 W07 | 05 31.0 | 5 | (BP) | | | | | | | 9474 | | HOLL | 05 31 | 1448 | N20 W08 | 05 31.0 | | В | CSO | 30 | 3 | 2 | 3 | | 9474 | | LEAR | 06 01 | 0015 | N20 W15 | 05 31.0 | | В | CRO | 10 | 2 | 2 | 4 | | 9474 | | VORO | 06 01 | 0444 | N20 W17 | 05 31.0 | | | AXX | 7 | 1 | | 2 | | 9474 | | SVTO | 06 01 | 0520 | N19 W17 | 05 31.0 | | Α | AXX | | 1 | | 2 | | 9474 | | TACH | 06 01 | 0715 | N19 W18 | 05 31.0 | | | AXX | 30 | 1 | 1 | 2<br>2<br>2 | | 9474 | | KAND | 06 01 | 0845 | N19 W18 | 05 31.0 | | | AX | | 3 | 2 | 4 | | 9474 | | RAMY | 06 01 | 1250 | N21 W21 | 05 31.0 | | Α | AXX | | 1 | | 3 | | 9474 | 30480 | MWIL | 06 01 | 1400 | N20 W21 | 05 31.0 | 4 | (AP) | | | | | | | 9474 | | HOLL | 06 01 | 1432 | N21 W22 | 05 31.0 | | Α | AXX | 20 | 2 | 1 | 3 | | 9474 | | SVTO | 06 02 | 0520 | N21 W28 | 05 31.1 | | В | вхо | | 3 | 5 | 3<br>3<br>4 | | 9474 | | HOLL | 06 03 | 1433 | N22 W46 | 05 31.1 | | A | AXX | 10 | 1 | 1 | 4 | | 9477A | 30499 | MWIL | 06 02 | 1400 | s17 W32 | 05 31.1 | 4 | (B) | | | | | | | 9477A | | VORO | 06 02 | 2126 | S16 W35 | 05 31.2 | | | BXO | 21 | 2<br>2 | 1 | 2<br>2 | | 9477A | | LEAR | 06 03 | 0025 | s16 W37 | 05 31.2 | | В | BXO | 10 | 2 | 3 | 2 | | 9477A | 30499 | MWIL | 06 03 | 1430 | S17 W45 | 05 31.2 | 3 | (AP) | | | | | | Stations reporting: HOLL = Holloman KAND = Kandilli MWIL = Mt. Wilson PALE = Palehua RAMY = Ramey SVTO = San Vito TACH = Tashkent VORO = Voroshilov LEAR = Learmonth MAY 2001 | | | | | | | | | Y 200 | | | | | | |----------|---------------|--------------|--------------|----------|-----------------|-----------|----------------|-------|------------|--------|---------------|----------------|----------------| | ===== | | ====== | ===== | ====== | Wide | Number of | | | | | | | | | Day | Start<br>(UT) | Max<br>(UT) | End<br>(UT) | Imp | Spread<br>Index | SWF | | SPA | LF-<br>SPA | SES | Flare<br>(UT) | X-ray<br>Class | NOAA<br>Region | | 01 | 1428 | 1441 | 1510 | 1- | 5 | | 1 | | | 3 | 1436 | C1.7 | 9433 | | | | 1509 | 1541 | 2 | 3 | | • | | | 4 | 1455 | C2.2 | 9441 | | 01 | 1500 | | | 1 | 5 | | 1 | | | 1 | 1652 | C2.0 | 9445 | | 01 | 1642 | 1656 | 1733 | | 3 | | • | | | 8 | 1723 | C4.2 | 9441 | | 01<br>01 | 1726<br>1900 | 1734<br>1910 | 1813<br>2058 | 2<br>3 | 3<br>1 | | | | | 6 | 1858 | M2.4 | 9433 | | 00 | 0075 | 00/4 | 0425 | ٦. | 4 | | | | | 1 | 0032 | M1.8 | 9441 | | 02<br>02 | 0035<br>0627 | 0041<br>0631 | 0125<br>0652 | 2+<br>3- | 1<br>5 | 1 | 2 | 1 | | 3 | 0626 | C8.7 | 9441 | | 02 | 1322 | 1348 | 1425 | 1 | 1 | • | 1 | • | | - | No flare | | , | | 02 | 1709 | 1716 | 1757 | 2 | 3 | | • | | | 4 | 1708 | C1.9 | | | 02 | 1930 | 1935 | 2011 | 2- | 3 | | | | | 7 | 1928 | C2.4 | | | 03 | 0545 | 0548 | 0600 | 1- | 3 | | | | | 2 | 0544 | C1.6 | | | 03 | 2135 | 2141 | 2213 | 2- | 3 | | | | | 3 | 2116 | C2.3 | | | 04 | 0548 | 0558 | 0640 | 2 | 1 | | 1 | | | | No flare | | | | 04 | 1439 | 1445 | 1530 | 2- | i | | • | | | 1 | 1440 | C4.1 | 9447 | | 04 | 1443 | 1504 | 1540 | 2+ | 3 | | | | | 2 | 1440 | C4.1 | 9447 | | 04 | 1905 | 1925 | 2015 | 2+ | 1 | | | | | 1 | 1904 | 04.1 | 9447 | | 05 | 00/0 | 0851 | 0923 | 3 | 5 | 1 | 2 | 1 | | 2 | 0842 | M1.0 | 9445 | | | 0848 | | | | 3 | ı | 2 | • | | 8 | 1807 | C6.3 | 9445 | | 05<br>05 | 1810<br>2106 | 1818<br>2109 | 1908<br>2113 | 2+<br>1- | 1 | | | | | 1 | 2100 | B9.3 | 7443 | | | | | | _ | | | | | | | 4470 | 02.0 | | | 06 | 1145 | 1148 | 1248 | 2 | 1 | | | | | 1 | 1140 | C2.8 | 0//5 | | 06<br>06 | 1933<br>1953 | 1948<br>2004 | 2025<br>2039 | 2<br>2- | 3<br>3 | | | | | 5<br>4 | 1931<br>1931 | C7.9<br>C7.9 | 9445<br>9445 | | | | | | | | | | | | | | | | | 07 | 1211 | 1224 | 1245 | 2 | 5 | 1 | | 1 | | 1<br>1 | 1136<br>1534 | C3.9<br>C2.2 | 9445<br>9445 | | 07 | 1535 | 1600 | 1615 | 2 | 1 | | | | | 1 | 1734 | 62.2 | 9445 | | 80 | 0043 | 0055 | 0135 | 2+ | 1 | | | | | 1 | 0036 | c9.9 | 9445 | | 80 | 0735 | 0741 | 0814 | 1 | 1 | | 1 | | | _ | No flare | | | | 80 | 1516 | 1517 | 1530 | 1- | 1 | | | | | 1 | No flare | | | | 80 | 1616 | 1622 | 1644 | 1+ | 1 | | | | | 1 | 1610 | C1.6 | | | 09 | 0850 | 0856 | 0947 | 1+ | 1 | | | | | 1 | 0847 | C1.5 | 9445 | | 10 | 1444 | 1515 | 1610 | 2- | 5 | | 1 | | | 2 | 1448 | C6.1 | 9454 | | 11 | 0835 | 0859 | 1026 | 1 | 1 | | 1 | | | | No flare | | | | 11 | 1005 | 1008 | 1022 | 1- | 1 | | | | | 1 | 1000 | C1.6 | 9455 | | 11 | 2018 | 2022 | 2054 | 2- | 3 | | | | | 3 | 2017 | C3.7 | | | 11 | 2110 | 2130 | 2216 | 2+ | 1 | | | | | 1 | * | | | | 11 | 2233 | 2243 | 2310 | 2- | 3 | | | | | 2 | 2231 | C2.7 | | | 12 | 0835 | 0852 | 0915 | 1- | 3 | | 1 | | | 1 | 0841 | B9.5 | 9454 | | 12 | 0959 | 1006 | 1024 | ż | 5 | 1 | 2 | 1 | | 1 | 0954 | C2.8 | 9455 | | 12 | 1208 | 1213 | 1230 | 3- | 5 | i | 2 | 1 | | 1 | 1202 | C5.7 | 9454 | | 12 | 1411 | 1420 | 1503 | 1+ | 5 | • | 1 | • | | 4 | 1408 | C4.0 | 9455 | | 12 | 1443 | 1450 | 1503 | 2 | 5 | 1 | i | 1 | | 3 | 1440 | C4.2 | 9455 | | 12 | 1716 | 1723 | 1741 | 1 | 3 | • | • | • | | 3 | 1714 | C3.5 | 9455 | | 12 | 2325 | 2331 | 0103 | 3- | 3 | | | | | 2 | 2242 | M3.0 | 9455 | | 13 | 0023 | 0028 | 0040 | 1- | 1 | | | | | 1 | 0020 | C3.4 | 9455 | | 13 | 0304 | 0307 | 0330 | 1+ | i | | | | | i | 0258 | M3.6 | 9455 | | 13 | 0818 | 0821 | 0831 | 2- | 5 | 1 | 1 | 1 | | 3 | 0813 | C3.4 | 9455 | | 13 | 0949 | 1034 | 1204 | 1 | 1 | • | 1 | • | | - | 0958 | B9.7 | 9455 | | 13 | 1401 | 1405 | 1443 | 1+ | 5 | 1 | 2 | 1 | | 7 | 1358 | C4.9 | 9455 | | 13 | 1915 | 1919 | 1949 | 1+ | 3 | • | _ | • | | 6 | 1912 | C3.3 | | | 13 | 2051 | 2053 | 2115 | 1 | 1 | | | | | 1 | 2047 | C1.6 | | | 14 | 1220 | 1232 | 1245 | 1 | 1 | | | | | 1 | 1213 | C2.3 | 9455 | | 14 | 1827 | 1828 | 1849 | 1 | i | | | | | i | No flare | | | | 15 | 0258 | 0303 | 0335 | 2 | 1 | | | | | 1 | 0253 | M1.0 | 9455 | | 15 | 0839 | 0847 | 0912 | 1+ | 5 | | 1 | | | ż | 0834 | C3.5 | 9455 | | 15 | 1322 | 1333 | 1348 | ż | 5 | 1 | 1 | 1 | | 1 | 1316 | C3.4 | | | 15 | 1559 | 1610 | 1632 | 1 | 1 | • | 1 | | | | * | | | | | | • | | | | | <del>.</del> . | | | | | | | <sup>\* =</sup> no flare patrol. #### SUDDEN IONOSPHERIC DISTURBANCES MAY 2001 | | Start | Max | End | | | Number of | Stat | ion R | eports by Ty<br>LF- | /pe<br>Flare | X-ray | NOAA | |----|-------|-------|-------|-----|-------|-----------|--------|-------|---------------------|--------------|-------|--------| | ay | (UT) | (UT) | (UT) | Imp | Index | SWF | SEA | SPA | SPA SES | (UT) | Class | Region | | 6 | 0630 | 0635 | 0659 | 2 | 5 | | 2 | 1 | 2 | 0628 | C4.2 | 9455 | | 6 | 1039 | 1045 | 1106 | 3 | 5 | 1 | 2 | 1 | 5 | 1035 | M1.3 | 9455 | | 6 | 1436 | 1445 | 1513 | 2- | 3 | | | | 4 | 1435 | C2.1 | | | 6 | 1522 | 1538 | 1613 | 1+ | 5 | | 1 | | 1 | 1536 | C2.7 | 9458 | | 6 | 1543 | 1551 | 1620 | 2- | 3 | | | | 4 | 1536 | C2.7 | 9458 | | 6 | 1656 | 1719U | 1758 | 1 | 1 | | 1 | | | No flare | | | | 6 | 1834 | 1841 | 1905 | 2- | 3 | | | | 4 | 1833 | C1.5 | 9455 | | 6 | 1918 | 1924 | 1933 | 1- | 1 | | | | 1 | 1917 | B8.5 | | | 7 | 0650 | 0657 | 0703 | 1- | 1 | | | | 1 | 0647 | C2.2 | | | 7 | 1000 | 1006 | 1027 | 2 | 5 | 1 | 2 | 1 | 3 | 0957 | C4.0 | | | 7 | 1306 | 1313 | 1330 | 1 | 1 | | | | 1 | 1309 | B9.8 | | | 7 | 1341 | 1347 | 1412 | 1+ | 3 | | | | 3 | 1341 | C1.9 | 9455 | | 7 | 1439 | 1444 | 1504 | 1+ | 3 | | | | 3 | 1439 | C1.4 | | | 7 | 1651 | 1655 | 1725 | 2 | 5 | | | 1 | 6 | 1646 | M1.2 | 9455 | | 7 | 1936 | 1953 | 2036 | 2+ | 3 | | | • | 6 | 1936 | c7.0 | 9454 | | 7 | 2015 | 2020 | 2045D | 1 | 1 | | | | 1 | No flare | | | | 17 | 2044 | 2049 | 2125 | ż- | 3 | | | | 6 | 2041 | C9.1 | 9454 | | 17 | 2140 | 2145 | 2237 | 2+ | 3 | | | | 2 | 2136 | C4.0 | 9461 | | | | | | | | | | | | | | , | | 18 | 0633 | 0635 | 0641 | 3 | 5 | 1 | 2 | 1 | 4 | 0629 | C6.4 | | | 18 | 1454 | 1500 | 1523 | 1+ | 3 | | | | 3 | 1454 | C2.4 | | | 18 | 1538 | 1547 | 1619 | 2- | 3 | | | | 3 | 1539 | C2.5 | | | 18 | 1828 | 1835 | 1931 | 2+ | 3 | | | | 7 | 1824 | C5.7 | | | 19 | 0210 | 0215 | 0230 | 1 | 1 | | | | 1 | * | | | | 19 | 0742 | 0746 | 0753 | 1- | 1 | | | | 1 | 0741 | C1.5 | | | 19 | 1100 | 1104 | 1119 | 1+ | 5 | 1 | | 1 | | * | | | | 19 | 1437 | 1439 | 1446 | 2+ | 5 | | 2 | 1 | 9 | 1433 | C6.7 | | | 19 | 2150 | 2200 | 2210D | 2 | 1 | | | | 1 | 2148 | C2.1 | | | 19 | 2210 | 2220 | 2250 | 2 | 1 | | | | 1 | No flare | | | | 20 | 0601 | 0604 | 0638 | 3- | 5 | 1 | 2 | 1 | 4 | 0600 | M6.4 | | | 20 | 0918 | 0923 | 0942 | 3 | 5 | 1 | 2 | 1 | 3 | 0912 | M1.5 | | | 20 | 1138 | 1141 | 1225 | 3- | 5 | 1 | 2<br>2 | 1 | 6 | 1135 | C6.1 | | | 20 | 1436 | 1443 | 1520 | 2- | 5 | • | 1 | • | 7 | 1432 | C2.9 | | | 20 | 1915 | 1925 | 2000 | 2 | 1 | | • | | 1 | 1907 | B9.2 | | | 20 | 1931 | 1941 | 2008 | 2- | 3 | | | | 4 | 1930 | C1.3 | | | | | 1741 | | | | | | | - | | 0 | | | 23 | 1618 | 1645U | 1714 | 1 | 1 | | 1 | | | No flare | | | | 23 | 2110 | 2113 | 2130 | 1 | 1 | | | | 1 | 2103 | B7.0 | | | 24 | 1530 | 1534 | 1552 | 1 | 1 | | | | 1 | No flare | | | | 24 | 1928 | 1934 | 2050 | 3- | 3 | | | | 3 | 1930 | M1.2 | 9468 | | 24 | 1935 | 1944 | 2051 | 2+ | 3 | | | | 3 | 1930 | M1.2 | 9468 | | 25 | 1917 | 1930 | 2035 | 2+ | 1 | | | | 1 | 1912 | C5.2 | 9468 | | 25 | 2205 | 2213 | 2240 | 2 | i | | | | 1 | 2200 | C2.8 | 9468 | | 27 | 1210 | 1245 | 1304 | 1 | 1 | | 1 | | | No flare | | | | | | | | | | | • | | _ | | 24.2 | | | 28 | 1552 | 1557 | 1616 | 1 | 3 | | | | 3 | 1548 | C1.2 | | | 29 | 0523 | 0533 | 0557 | 1 | 1 | | 1 | | | 0521 | C4.4 | 9475 | | 30 | 2150 | 2151 | 2201 | 1- | 1 | | | | 1 | No flare | | | | | | | | | | | | | | | | | | 31 | 1910 | 1912 | 1931 | 1- | 3 | | | | 2 | 1907 | C1.7 | | <sup>\* =</sup> no flare patrol. #### OBSERVATORIES REPORTING FOR MAY 2001 | Alberta, Canada | SES | Koniz, Switzerland | SES | |-------------------------------|-----|------------------------------|---------------| | Bedford, Massachusetts, USA | SES | Mandaville, Arizona, USA | SES | | Brookline, Massachusetts, USA | SES | Marlboro, Massachusetts, USA | SES | | Cambridge, England, UK | SES | Nerja, Spain | SES | | Edenvale, Rep of S. Africa | SES | Panska Ves, Czech Republic | SES, SEA, SWF | | Houston, Texas, USA | SES | Sofia, Bulgaria | SES | | Hudson, Ohio, USA | SES | Torrington, Connecticut, USA | SES | | Isola del Gran Sasso, Italy | SES | Upice, Czech Republic | SEA | ### SOLAR RADIO EMISSION Spectral Observations MAY | | | ATION | | | | VENT | | | FREQUE | | B | |----------------|------|-------------|------|------------------|------------------|-------------------|------------------|--------------|----------------|----------------|---------| | Sta<br>Day (Ul | | End<br>(UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | ···· | | | | | | | | | | | | | 1 000 | 00 ( | 0725 | CULG | 0209.0 | 0211.0 | III | G | 1 | 35<br>32 | 160 | | | | | | LEAR | 0211.0 | 0211.0 | III | | 1 | 32 | 79 | | | | | | CULG | 0222.0 | 0222.0 | III | В | 1<br>1 | 35<br>25 | 180 | | | | | | LEAR | 0222.0 | 0222.0 | III | | 1 | 25<br>25 | 180<br>145 | | | 000 | | 0027 | PALE | 0222.0 | 0222.0 | III<br>III | В | 1 | 30 | 190 | | | | | 0926 | HIRA | 0222.0 | 0222.5 | DCIM | ь | 1 | 220 | 400 | | | 04 | 14 | 1742 | POTS | 0418.2<br>0441.0 | 0419.9<br>0442.0 | III | G | 2 | 20 | 160 | | | | | | CULG | | 0442.0 | III | u | 1 | 25 | 180 | | | | | | LEAR | 0441.0 | | | | 1 | 25 | 180 | | | | | | SVTO | 0441.0 | 0442.0 | III | В | 2 | 25X | 160 | | | | | | HIRA | 0441.5 | 0442.0 | III<br>III | B<br>G | 2 | 40X | 90U | | | | | | POTS | 0441.5 | 0442.0 | DCIM | u | 1 | 250 | 450 | | | 0// | , n | 1707 | POTS | 0447.3 | 0451.7 | DCIM | | | 230 | 450 | | | 044 | 49 | 1707 | ONDR | 0507.3 | 0507 / | * * * * | D | 2 | 11011 | 170U | | | | | | POTS | 0503.2 | 0503.4 | III | В | 2 | 110U | | | | | | | POTS | 0528.0 | 0528.5 | III | G | 2 | 110U | 145 | | | | | | SVTO | 0528.0 | 0528.0 | III | 0.11 | 1 | 25 | 138 | | | | ~~ | 4007 | POTS | 0548 E | 1742 U | I | s,W | 1 | 110U | 350 | | | 060 | 02 | 1203 | IZMI | 0602.0U | 0622.0 | I | N | 1 | 200 | 270X | | | | | | IZMI | 0605.6 | 0605.7 | III | В | 2 | 205 | 270X | | | | | | HIRA | 0612.0 | 0612.5 | III | В | 1 | 220 | 410 | | | | | | IZMI | 0612.3 | 0612.7 | III | G | 2 | 220 | 270X | | | | | | POTS | 0612.3 | 0612.7 | DCIM | _ | 2 | 220 | 350 | | | | | | POTS | 0622.5 | 0622.7 | III | В | 1 | 110U | 170U | | | | | | LEAR | 0648.0 | 0649.0 | III | _ | 1 | 25 | 180 | | | | | | IZMI | 0709.4 | 0709.6 | III | В | 1 | 170 | 190 | | | | | | HIRA | 0723.5 | 0724.0 | III | В | 2 | 80 | 110 | | | | | | POTS | 0723.9 | 0724.1 | III | В | 2 | 110U | 145 | | | | | | IZMI | 0724.0 | 0724.1 | III | В | 2 | 75 | 120 | | | | | | IZMI | 0730.5 | 0731.0 | I | GG | 2 | 185 | 200 | | | | | | POTS | 0730.6 | 0730.7 | III | В | 1 | 110U | 150 | | | | | | IZMI | 0748.0 | 0748.1 | III | В | 2 | 30 | 95 | | | | | | POTS | 0748.0 | 0748.2 | III | В | 1 | 40X | 70 | | | | | | SVTO | 0748.0 | 0748.0 | III | | 1 | 25 | 53 | | | | | | LEAR | 0835.0 | 0838.0 | III | | 1 | 44 | 135 | | | | | | SVTO | 0835.0 | 0837.0 | III | | 1 | 25 | 131 | | | | | | IZMI | 0836.0 | 0838.2 | III | GG,FS | 2 | 40 | 160 | | | | | | POTS | 0836.0 | 0837.9 | III | G | 2 | 40X | 155 | | | | | | IZMI | 0859.0 | 0859.1 | III | В | 1 | 45 | 55 | | | | | | IZMI | 0916.4 | 0916.8 | III | GG | 2 | 80 | 210 | | | | | | POTS | 0916.4 | 0916.8 | III | G | 2 | 110U | 170U | | | | | | IZMI | 0937.0 | 1132.0U | III | N | 1 | 45 | 95 | | | | | | IZMI | 0947.0U | 0957.0 | I | N | 1 | 220 | 270X | | | | | | POTS | 0947.7 | 0947.9 | III | В | 1 | 55 | 160 | | | | | | POTS | 1016.6 | 1036.3 | III | GG | 3 | 40X | 250 | | | | | | IZMI | 1021.4 | 1022.8 | III | G | 2 | 25X | 240 | | | | | | IZMI | 1024.5 | 1025.6 | III | G | 3 | 25X | 130 | | | | | | IZMI | 1029.6 | 1032.2 | III | GG | 2 | 25X | 160 | | | | | | IZMI | 1034.4 | 1036.3 | III | G | 2 | 40 | 95 | | | | | | IZMI | 1122.1 | 1123.0 | 111 | Ğ | 1 | 45 | 160 | | | | | | POTS | 1122.5 | 1123.1 | III | Ğ | 2 | 40x | 170U | | | | | | POTS | 1153.1 | 1153.2 | III | В | 1 | 1100 | 145 | | | | | | POTS | 1345.0 | 1345.1 | UNCLF | - | 2 | 2000 | 250 | | | | | | POTS | 1434.3 | 1446.2 | III | G,C | 3 | 40X | 400 | | | | | | HOLL | 1434.3 | 1441.0 | III | 3,0 | 1 | 25 | 174 | | | | | | SGMR | 1437.0 | 1438.0 | III | | 3 | 30 | 75 | | | | | | SVTO | 1437.0 | 1441.0 | III | | 2 | 25 | 180 | | | | | | HOLL | 1502.0 | 1503.0 | III | | 1 | 25<br>25 | 52 | | | | | | SVTO | 1502.0 | 1503.0 | III | | 1 | 25<br>25 | 53 | | | | | | HOLL | 1502.0 | 1523.0 | III | | i | 25<br>25 | 82 | | | | | | | | | III | | 1 | 25<br>25 | 77 | | | | | | SVTO | 1521.0 | 1522.0 | | D | 1 | 40X | 90U | | | | | | POTS | 1521.7 | 1521.9 | III | В | 1 | 40X<br>25 | 126 | | | | | | HOLL | 1559.0 | 1559.0 | III | | | | | | | | | | SVTO | 1559.0 | 1559.0 | III | • | 1 | 25 | 141 | | | | | | POTS | 1559.5 | 1559.7 | III | G | 3 | 110U | 225 | | | | | | HOLL | 1638.0 | 1728.0 | III | N | 1 | 25 | 84 | | | | | | SGMR | 1638.0 | 1638.0 | III | | 1 | 30 | 65 | | | | | | SVTO | 1638.0 | 1721.0 | III | N | 1 | 250 | <b>7</b> 5U | | | | | | POTS | 1638.1 | 1638.2 | III | В | 1 | 110U | 160 | | #### SOLAR RADIO EMISSION Spectral Observations MAY | C | | ATION | | | | /ENT | | | FREQUI | | | |-----|-------|-------|------|---------|---------|----------|---------|--------------|----------|-------|---------| | | Start | | C+- | Start | End | Spectral | | Int<br>(1-7) | Lower | Upper | Remarks | | ay | (01) | (UT) | Sta | (UT) | (UT) | Class | Remarks | (1-3) | (MHz) | (MHz) | | | 1 | | | PALE | 1643.0 | 1812.0 | III | N | 1 | 25U | 55U | | | • • | | | SGMR | 1722.0 | 1846.0 | III | N | 1 | 30 | 75 | | | | | | HOLL | 1808.0 | 1820.0 | 111 | N | <u>i</u> | 25 | 80 | | | | | | HOLL | 2016.0 | 2020.0 | III | 14 | i | 25 | 180 | | | | | | PALE | 2016.0 | 2020.0 | III | | i | 25U | 113U | | | | | | SGMR | 2017.0 | 2020.0 | III | | i | 30 | 80 | | | | 1942 | 2/00 | | | 2018.5 | III | В | 2 | 30 | 400 | | | | 1942 | 2400 | HIRA | 2017.5 | | | В | | | | | | | | | PALE | 2122.0 | 2122.0 | III | | 1 | 25U | 65U | | | | 2075 | 2/00 | SGMR | 2122.0 | 2122.0 | III | D. | 1 | 30<br>35 | 80 | | | | 2035 | 2400 | CULG | 2122.0 | 2122.0 | III | В | 1 | 35 | 90 | | | 2 | | | LEAR | 0210.0 | 0211.0 | III | | 1 | 25 | 103 | | | | 0000 | 0725 | CULG | 0211.0 | 0211.0 | 111 | В | 1 | 35 | 90 | | | | 0414 | | POTS | 0435.7 | 0436.4 | DCIM | | 2 | 300 | 450 | | | | • | 05.0 | POTS | 0441.7 | 0441.8 | DCIM | | 1 | 2000 | 400 | | | | 0447 | 1708 | ONDR | 0441.7 | 0441.0 | DOIN | | • | 2000 | 400 | | | | 0447 | 1100 | | 0/54 | 0519 !! | ī | e u | 1 | 120 | 400 | | | | | | POTS | 0456 | 0518 U | I | S,W | | | | | | | | | POTS | 0510.0 | 0510.1 | III | В | 1 | 110U | 160 | | | | | | POTS | 0510.2 | 0510.5 | DCIM | _ | 2 | 200U | 375 | | | | 0000 | 0927 | HIRA | 0514.5 | 0516.0 | III | G | 1 | 50 | 190 | | | | | | POTS | 0514.9 | 0516.1 | 111 | G | 2 | 110U | 170U | | | | | | CULG | 0515.0 | 0516.0 | III | G | 1 | 23 | 160 | | | | | | LEAR | 0515.0 | 0515.0 | III | | 1 | 25 | 153 | | | | | | SVTO | 0515.0 | 0515.0 | III | | 1 | 25 | 151 | | | | 0528 | 1722 | POTS | 0528 E | 1722 U | I | s | 1 | 110U | 325 | | | | | | POTS | 0528.1 | 0528.6 | 111 | Ğ | ż | 1100 | 150 | | | | | | CULG | 0540.0 | 0629.0 | III | N | 1 | 30 | 180 | | | | | | POTS | 0541.9 | 0546.5 | 111 | G | ż | 110U | 275 | | | | 0550 | 1200 | | | | | | | 130 | 270x | | | | 0550 | 1200 | IZMI | 0553.0 | 0700.0U | I | N | 1 | | | | | | | | IZMI | 0558.0 | 1140.00 | III | N | 1 | 45 | 95 | | | | | | IZMI | 0602.7 | 0607.2 | I | GG | 2 | 70 | 95 | | | | | | IZMI | 0604.4 | 0604.5 | III | В | 2 | 180 | 215 | | | | | | SVTO | 0606.0 | 0606.0 | III | | 1 | 25 | 72 | | | | | | IZMI | 0606.3 | 0608.8 | III | GG | 2 | 45 | 95 | | | | | | POTS | 0613.4 | 0613.6 | DCIM | | 1 | 200U | 400 | | | | | | LEAR | 0628.0 | 0628.0 | 111 | | 1 | 51 | 173 | | | | | | SVTO | 0628.0 | 0629.0 | III | | 1 | 42U | 83U | | | | | | POTS | 0628.4 | 0629.1 | III | G,U | 3 | 1100 | 170U | | | | | | HIRA | 0628.5 | 0629.0 | III | В | 1 | 70 | 200 | | | | | | | 0628.6 | 0629.0 | III | G | ż | 45 | 210 | | | | | | IZMI | | | | | | | | | | | | | IZMI | 0631.2 | 0631.6 | III | G | 1 | 180 | 270X | | | | | | IZMI | 0951.6 | 0951.7 | III | G | 1 | 190 | 270X | | | | | | IZMI | 0954.1 | 0954.2 | III | G | 1 | 175 | 270X | | | | | | SVTO | 0957.0 | 0957.0 | III | | 1 | 130 | 170 | | | | | | POTS | 0957.2 | 0957.7 | III | G,U | 3 | 110U | 250 | | | | | | IZMI | 0957.3 | 0957.7 | 111 | G | 2 | 130 | 270X | | | | | | POTS | 0957.3 | 0957.7 | DCIM | | 2 | 200U | 550 | | | | | | IZMI | 1024.0 | 1150.0U | I . | N | 1 | 160 | 240 | | | | | | POTS | 1041.9 | 1042.1 | DCIM | | 2 | 290 | 500 | | | | | | IZMI | 1100.5 | 1100.8 | III | В | 2 | 25 | 210 | | | | | | POTS | 1100.5 | 1100.9 | III | Ğ | 2 | 40x | 170U | | | | | | POTS | 1113.7 | 1113.9 | III | В | 2 | 1100 | 145 | | | | | | | 11122.3 | 11127.0 | | | 2 | 45 | 160 | | | | | | IZMI | | | III | GG | | | | | | | | | POTS | 1122.3 | 1126.8 | III | G | 2 | 40X | 170U | | | | | | POTS | 1142.9 | 1143.0 | III | В | 1 | 130 | 170U | | | | | | POTS | 1231.2 | 1232.0 | III | G | 2 | 40x | 250 | | | | | | SVTO | 1413.0 | 1424.0 | III | N | 1 | 250 | 83U | | | | | | POTS | 1420.5 | 1421.2 | III | G | 2 | 40x | 250 | | | | | | POTS | 1450.9 | 1451.0 | III | G | 2 | 110U | 170U | | | | | | HOLL | 1526.0 | 1529.0 | III | | 1 | 25 | 125 | | | | | | SGMR | 1526.0 | 1529.0 | III | | i | 30 | 80 | | | | | | SVTO | 1526.0 | 1529.0 | III | | 2 | 25 | 180 | | | | | | POTS | 1526.8 | 1529.4 | III | G | 3 | 40X | 250 | | | | | | | | | | u u | | 200U | | | | | | | POTS | 1616.8 | 1617.2 | DCIM | | 2 | | 400 | | | | | | HOLL | 1746.0 | 1747.0 | III | | 1 | 25 | 134 | | | | | | PALE | 1746.0 | 1747.0 | 111 | | 1 | 25U | 85U | | | | | | SGMR | 1746.0 | 1747.0 | III | | 1 | 30 | 70 | | | | | | HOLL | 1945.0 | 1957.0 | III | | 1 | 25 | 151 | | | | | | PALE | 1945.0 | 2024.0 | III | N | 1 | 25 | 85 | | MAY | ( | OBSER\ | ATION | | | | VENT | | | FREQUI | | | |-----|--------|--------------|--------------|------------------|------------------|-------------------|------------------|--------------|----------------|----------------|---------| | Dav | Start | End<br>(UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | | (01) | | | • | | | - Kelliai Ko | | | | | | )2 | 40/4 | 2/00 | SGMR | 1947.0 | 1948.0 | III | • | 1 | 30<br>130 | 80 | | | | 1941 | | HIRA | 2003.0 | 2003.5 | III<br>I | G | 1<br>1 | 120<br>60 | 400<br>160 | | | | 2040 | 2400 | CULG | 2040.0E | 2400.0D | 1 | s,c | ' | 60 | 100 | | | 3 | 0000 | 0725 | CULG | 0000.0E | 0725.0D | I | S,C | 1 | 50 | 170 | | | _ | 0000 | 0.23 | CULG | 0015.0 | 0016.0 | ĪII | G | 1 | 30 | 170 | | | | | | LEAR | 0015.0 | 0026.0 | III | N | 1 | 32 | 180 | | | | | | PALE | 0015.0 | 0035.0 | 111 | N | 1 | 25 | 180 | | | | | | CULG | 0022.0 | 0026.0 | III | G | 1 | 30 | 180 | | | | 0000 | 0928 | HIRA | 0024.0 | 0025.0 | III | G | 1 | 50 | 270 | | | | | | CULG | 0033.0 | 0036.0 | III | G | 2 | 30 | 180 | | | | | | LEAR | 0033.0 | 0036.0 | III | _ | 1 | 25 | 180 | | | | | | HIRA | 0034.0 | 0035.5 | III | G | 2 | 30 | 200 | | | | | | LEAR | 0055.0 | 0734.0 | CONT | • | 1 | 62<br>1/0 | 180 | | | | 0415 | 1774 | HIRA | 0331.5<br>0445 E | 0333.0<br>1736 U | III<br>I | G<br>S,C,DC | 1<br>2 | 140<br>110U | 370<br>300 | | | | 0415 | 1730 | POTS<br>CULG | 0529.0 | 0530.0 | 111 | G G | 3 | 18 | 90 | | | | | | LEAR | 0529.0 | 0530.0 | ٧ | ď | 2 | 25 | 119 | | | | | | SVTO | 0529.0 | 0530.0 | III | | 1 | 25 | 75 | | | | | | POTS | 0529.4 | 0529.8 | III | В | ż | 40x | 70 | | | | | | HIRA | 0529.5 | 0530.0 | III | В | 2 | 25X | 70 | | | | 0601 | 1200 | IZMI | 0545.0E | 1200.0D | III | N | 1 | 30 | 95 | | | | | | IZMI | 0601.0E | 0848.0 | I | s,c | 2 | 130 | 270x | | | | | | CULG | 0635.0 | 0635.0 | III | В | 1 | 30 | 80 | | | | | | IZMI | 0712.8 | 0713.0 | III | В | 2 | 45 | 95 | | | | | | POTS | 0712.9 | 0713.0 | III | В | 1 | 40x | 70 | | | | | | IZMI | 0723.1 | 0723.5 | I | GG,DC | 2 | 160 | 190 | | | | | | IZMI | 0801.2 | 0801.3 | UNCLF | | 2 | 44 | 55 | | | | 0446 | 1710 | ONDR | 0808.2 | 0808.3 | DCIM | G | 2 | 800X | 1691 | | | | | | IZMI | 0812.0 | 0829.0 | III | S | 2 | 25X | 270X | | | | | | LEAR | 0812.0 | 0828.0 | III | N<br>CC DC | 1 | 25<br>40x | 180<br>275 | | | | | | POTS | 0812.0 | 0828.8<br>0830.0 | III<br>III | GG,RS<br>N | 2<br>1 | 25 | 154 | | | | | | SVTO<br>IZMI | 0812.0<br>0847.7 | 1200.0D | I | N,C | 2 | 50 | 270X | | | | | | IZMI | 0947.3 | 0947.6 | UNCLF | N,C | 2 | 150 | 215 | | | | | | POTS | 1235.0 | 1235.1 | III | G,RS | 2 | 40x | 70 | | | | | | POTS | 1306.4 | 1308.4 | III | G,RS | 2 | 40X | 70 | | | | | | POTS | 1316.5 | 1316.6 | III | В | 1 | 45 | 90U | | | | | | POTS | 1346.1 | 1346.5 | 111 | В | 1 | 40x | 170U | | | | | | POTS | 1356.9 | 1357.1 | 111 | В | 1 | 40X | 70 | | | | | | POTS | 1403.9 | 1406.7 | III | G | 2 | 40X | 225 | | | | | | POTS | 1427.8 | 1433.2 | III | G | 2 | 40X | 225 | | | | | | SVTO | 1432.0 | 1432.0 | III | | 1 | 29U | 6 <b>3</b> U | | | | | | POTS | 1627.7 | 1627.8 | III | В | 1 | 40x | 70 | | | | | | POTS | 1709.8 | 1709.9 | III | В | 1 | 40x | 80 | | | | | | POTS | 1733.2 | 1733.4 | III | В | 2 | 40x | 120 | | | | | | PALE | 1921.0 | 2215.0 | III | N | 1<br>1 | 25<br>25 | 90<br>113 | | | | 10/0 | 2/00 | HOLL | 1927.0 | 1929.0 | 111 | | i | 25 | 112 | | | | | 2400<br>2400 | HIRA<br>CULG | 2126.0 | 2400.0D | I | s | 1 | 120 | 180 | | | | 2040 | 2400 | PALE | 2246.0 | 2247.0 | 111 | 3 | 2 | 25 | 180 | | | | | | LEAR | 2300.0 | 0126.0 | CONT | | 1 | 115 | 180 | | | | | | | 2500.0 | 0.2010 | | | • | | | | | )4 | 0000 | 0725 | CULG | 0000.0E | 0725.0D | I | s | 1 | 110 | 180 | | | | | 1738 | POTS | 0431 E | 1738 U | I | S,C,DC | 2 | 110U | 300 | | | | | 1711 | ONDR | | | | | | | | | | | | | SVTO | 0511.0 | 1724.0 | CONT | | 1 | 25U | 180U | | | | | | IZMI | 0602.0E | 1200.0 | III | N | 2 | 40 | 95 | | | | 0602 | 1200 | IZMI | 0602.0E | 1200.0 | I | s,c | 2 | 75 | 270X | | | | | | IZMI | 0622.8 | 0623.6 | III | G | 2 | 165 | 270X | | | | | | CULG | 0706.0 | 0706.0 | III | В | 1 | 30 | 110 | | | | | | IZMI | 0706.0 | 0706.3 | III | В | 2 | 45 | 190 | | | | | | POTS | 0706.0 | 0706.2 | III | В | 2 | 40X | 150 | | | | | | IZMI | 0710.3 | 0710.4 | III | В | 2 | 45<br>25 | 95<br>480 | | | | | | LEAR | 0732.0 | 0733.0 | III | | 2 | 25<br>25 | 180 | | | | 0000 | 0020 | SVTO | 0732.0 | 0733.0 | III | В | 2 | 25<br>30 | 180 | | | | UUUU | 0929 | HIRA | 0732.5<br>0732.6 | 0733.0<br>0733.6 | III | B | 2<br>2 | 30<br>25x | 200<br>220 | | | | | | IZMI<br>POTS | 0732.6 | 0733.6 | III<br>III | G,C | 3 | 40X | 300 | | | | | | FUID | 0,32.0 | 0.41.0 | 111 | G,U | J | <b>→</b> ∪∧ | 200 | | MAY | ( | DBSERV | | | | | VENT | F 4 | • | FREQUI | | Damanka | |-----|---------------|------|----------------|------------------|------------------|-------------------|------------------|--------------|----------------|----------------|---------| | )av | Start<br>(UT) | | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | _ | | | <del></del> | | | | | | | | | | 04 | | | HIRA | 0737.5 | 0738.0 | III | B | . 1 | 80<br>45 | 310 | | | | | | IZMI | 0737.7<br>0740.2 | 0738.2<br>0742.8 | III<br>III | G,RS<br>GG | 2<br>2 | 30 | 270X<br>100 | | | | | | I ZMI<br>I ZMI | 0823.2 | 0824.2 | I | GG,DC | 2 | 175 | 205 | | | | | | POTS | 0830.7 | 0831.3 | 111 | G G | 1 | 40x | 120 | | | | | | IZMI | 0831.1 | 0831.3 | III | В | 2 | 40 | 95 | | | | | | IZMI | 0844.7 | 0844.8 | III | В | 2 | 40 | 75 | | | | | | POTS | 0844.7 | 0844.8 | III | В | 2 | 40X | 90U | | | | | | POTS | 0849 | 1527 | III | N | 1 | 40x | 90U | | | | | | IZMI | 0938.1 | 0938.3 | III | В | 1 | 25 | 90 | | | | | | IZMI | 0946.2 | 0946.3 | III | В | 2 | 30 | 70 | | | | | | IZMI | 0959.8 | 1000.0 | III | В | 2 | 45 | 90 | | | | | | IZMI | 1121.1 | 1121.2 | III | В | 2<br>2 | 40<br>40x | 65<br>70 | | | | | | POTS<br>POTS | 1121.1<br>1140.1 | 1121.3<br>1140.5 | III<br>III | G<br>G | 2 | 40X<br>40X | 90U | | | | | | POTS | 1224.6 | 1224.8 | III | В | 2 | 40X | 80 | | | | | | POTS | 1259.8 | 1300.9 | III | G | 2 | 40X | 70 | | | | | | POTS | 1641.5 | 1641.8 | III | G,RS | 2 | 145 | 250 | | | | | | HOLL | 1720.0 | 1720.0 | III | -, | 1 | 25 | 90 | | | | | | PALE | 1934.0 | 2202.0 | III | N | 1 | 25 | 85 | | | | | | HOLL | 1946.0 | 1947.0 | III | | 1 | 25 | 150 | | | | | | SGMR | 1946.0 | 1947.0 | III | | 1 | 30 | 60 | | | | 2040 | | CULG | 2040.0E | 2342.0D | I | S | 1 | 100 | 170 | | | | 1939 | 2400 | HIRA | 2054.0 | 2054.5 | 111 | В | 1 | 80 | 300 | | | | | | CULG | 2055.0 | 2129.0 | III | N | 1 | 23 | 140 | | | | | | HIRA | 2055.0 | 2055.5 | III | В | 1 | 80 | 300 | | | | | | CULG | 2132.0 | 2132.0<br>2133.0 | III<br>III | B<br>B | 3<br>2 | 28<br>25x | 140<br>130 | | | | | | HIRA<br>SGMR | 2132.0<br>2132.0 | 2133.0 | III | В | 1 | 30 | 80 | | | | | | HOLL | 2257.0 | 2259.0 | III | | i | 25 | 172 | | | | | | CULG | 2258.0 | 2259.0 | III | G | ż | 35 | 150 | | | | | | HIRA | 2258.0 | 2258.5 | III | В | 2 | 30 | 150 | | | | | | LEAR | 2300.0 | 0940.0 | CONT | | 1 | 25 | 180 | | | | | | CULG | 2308.0 | 2314.0 | III | G | 1 | 40 | 160 | | | | | | LEAR | 2313.0 | 2314.0 | III | | 1 | 25 | 180 | | | | | | HIRA | 2313.5 | 2314.0 | 111 | В | 1 | 50 | 220 | | | )5 | 0414 | 1744 | POTS | 0441 E | 1744 U | I | s,c,DC | 2 | 110U | 350 | | | | | | POTS | 0441.9 | 0442.4 | III | G | 3 | 110U | 155 | | | | 0000 | 0929 | HIRA | 0442.0 | 0442.5 | III | В | 1 | 60 | 140 | | | | | | POTS | 0448.9 | 0450.3 | III | GG,RS | 2 | 110U | 170U | | | | | | POTS | 0451.4 | 0452.7 | III | G,RS | 3 | 110U | 170U | | | | | | HIRA | 0452.0 | 0452.5 | III | В | 2 | 50 | 190 | | | | | | LEAR | 0452.0 | 0452.0 | III | | 1 | 54 | 180 | | | | | | SVTO | 0452.0 | 0834.0 | III | N | 1 | 28U | 150U | | | | | | LEAR | 0457.0 | 0458.0 | III | В | 1 | 25<br>30 | 180<br>140 | | | | | | HIRA<br>POTS | 0458.0<br>0458.0 | 0458.5<br>0458.3 | 111<br>111 | B<br>G | 2<br>3 | 40X | 140 | | | | | | POTS | 0514.0 | 0514.6 | III | G | 2 | 1100 | 170U | | | | | | SVTO | 0514.0 | 1315.0 | CONT | - | 1 | 37u | 82U | | | | | | POTS | 0548.5 | 0548.7 | III | В | 3 | 1100 | 250 | | | | | | IZMI | 0601.0E | 1200.0 | III | N | 1 | 40 | 95 | | | | 0601 | 1200 | IZMI | 0601.0E | 1200.0 | I | S,C | | 45 | 215 | | | | | | IZMI | 0608.3 | 0608.5 | 111 | В | 2<br>2<br>2 | 45 | 100 | | | | | | IZMI | 0612.4 | 0612.5 | III | В | 2 | 40 | 90 | | | | | | POTS | 0612.4 | 0612.6 | III | В | 1 | 40X | 90U | | | | | | IZMI | 0620.9 | 0621.1 | III | В | 2 | 125U | 270 | | | | | | POTS | 0620.9 | 0621.2 | III | B | 2<br>1 | 110U<br>100 | 310<br>210 | | | | | | HIRA<br>Pots | 0621.0<br>0627.9 | 0621.5<br>0631.3 | III<br>III | B<br>G | 3 | 40X | 250 | | | | | | HIRA | 0628.0 | 0629.0 | III | В | 1 | 30 | 200 | | | | | | IZMI | 0628.0 | 0628.7 | III | GG | 2 | 40 | 215 | | | | | | HIRA | 0631.0 | 0631.5 | III | В | 1 | 60 | 240 | | | | | | IZMI | 0631.0 | 0631.3 | III | G | ż | 55 | 260 | | | | | | IZMI | 0809.6 | 0812.3 | III | GG,FS | 2<br>2 | 45 | 230 | | | | | | POTS | 0809.6 | 0811.2 | III | G,Ü | 2 | 40X | 225 | | | | | | POTS | 0811.8 | 0812.4 | 111 | G | 2 | 40X | 160 | | | | | | POTS | 0812 | 1219 | III | N | 1 | 40X | 90U | | | | | | POTS | 0816.5 | 0817.2 | III | G | 2 | 40x | 300 | | MAY | C | | ATION | | | | VENT | _ | | FREQUE | | | |-----|-------|----------|--------------|------------------|------------------|-------------------|------------------|--------------|----------------|----------------|---------| | av. | Start | End (UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | | | (01) | | | | | | | | | | | 5 | | | IZMI | 0835.4 | 0837.0 | III | G | 1 | 125 | 270X | | | | | | POTS | 0835.5 | 0835.6 | III | В | 2 | 110U | 170U | | | | 0//7 | 1717 | IZMI | 0841.2 | 0846.5 | III<br>DCIM | GG | 1 | 45<br>2000x | 90<br>/ F00Y | | | | 0443 | 1713 | ONDR | 0846.3<br>0858.7 | 0856.4<br>0859.0 | III | G | 1<br>1 | 2000X<br>50 | 4500X<br>270X | | | | | | IZMI<br>POTS | 0858.7 | 0901.5 | III | G | 2 | 60 | 300 | | | | | | IZMÍ | 1116.1 | 1116.3 | III | BG | 1 | 170 | 270X | | | | | | POTS | 1116.1 | 1116.2 | III | В | i | 150 | 300 | | | | | | IZMI | 1125.4 | 1125.6 | III | G | 2 | 55 | 270X | | | | | | POTS | 1125.4 | 1125.6 | III | В | 2 | 60 | 325 | | | | | | IZMI | 1140.6 | 1141.1 | III | G | 2<br>2<br>3 | 40 | 70 | | | | | | POTS | 1204.7 | 1209.5 | 111 | Ğ | 3 | 40x | 300 | | | | | | POTS | 1405.6 | 1409.5 | III | Ğ | 3 | 40X | 325 | | | | | | HOLL | 1407.0 | 1408.0 | III | | 1 | 41 | 176 | | | | | | SVTO | 1407.0 | 1409.0 | 111 | | 1 | 28U | 164U | | | | | | SGMR | 1408.0 | 1408.0 | III | | 1 | 40 | 70 | | | | | | POTS | 1727.8 | 1734.4 | III | G | 2 | 140 | 400 | | | | | | HOLL | 2319.0 | 2321.0 | III | | 1 | 25 | 129 | | | | | | LEAR | 2319.0 | 2321.0 | III | | 1 | 25 | 156 | | | | | | PALE | 2319.0 | 2320.0 | III | | 1 | 25U | 85U | | | | 1938 | 2400 | HIRA | 2319.5 | 2320.5 | III | В | 1 | 25X | 200 | | | | | - | LEAR | 2333.0 | 0114.0 | III | N | 1 | 25 | 126 | | | | | | | | | | | | | | | | 6 | 0000 | | HIRA | 0003.0 | 0004.5 | 111 | G | 2 | 25X | 230 | | | | 0414 | 1741 | POTS | 0440 E | 1741 U | I | S,W | 1 | 110U | 350 | | | | 0441 | | ONDR | | | | | | | | | | | 0550 | 1200 | IZMI | 0556 <b>.</b> 0U | 1200.0 | III | N | 1 | 45 | 95 | | | | | | IZMI | 0637.OU | 1200.0 | I | N | 1 | 190 | 270 | | | | | | HIRA | 0649.0 | 0649.5 | III | В | 1 | 60 | 180 | | | | | | LEAR | 0649.0 | 0650.0 | III | | 1 | 65 | 180 | | | | | | SVTO | 0649.0 | 0649.0 | III | | 1 | 250 | 142U | | | | | | IZMI | 0649.3 | 0649.9 | III | GG | 2 | 45 | 180 | | | | | | POTS | 0649.3 | 0649.7 | III | G | 2 | 40X | 170U | | | | | | IZMI | 0748.0 | 0748.6 | III | GG | 2 | 185 | 270X | | | | | | POTS | 0748.0 | 0748.5 | DCIM | _ | 1 | 200U | 325 | | | | | | POTS | 0855.9 | 0856.3 | III | G | 1 | 135 | 170U | | | | | | IZMI | 0944.4 | 0944.7 | III | G | 2 | 45 | 95 | | | | | | POTS | 0944.4<br>1027.0 | 0944.7 | III | G | 1 | 40X<br>25U | 170U | | | | | | SVTO | | 1033.0 | III | | 1 | 30 | 74U<br>80 | | | | | | SGMR | 1240.0 | 1240.0<br>1444.6 | III<br>DCIM | | 1<br>1 | 225 | 400 | | | | 1938 | 24.00 | POTS | 1444.3 | 1444.0 | DCIM | | • | 223 | 400 | | | | 2210 | | HIRA<br>CULG | | | | | | | | | | | 2210 | 2400 | HOLL | 2347.0 | 0031.0 | III | N | 1 | 25 | 133 | | | | | | HOLL | 2347.0 | 0031.0 | 111 | N | • | رے | 133 | | | 7 | 0000 | 0725 | CULG | 0359.0 | 0400.0 | III | G | 1 | 40 | 110 | | | • | 0000 | | HIRA | 0359.5 | 0400.0 | III | В | i | 25x | 160 | | | | 0440 | | ONDR | 0007.0 | 5700.0 | | | • | 277 | .00 | | | | 0559 | | IZMI | | | | | | | | | | | , | 00 | HOLL | 1821.0 | 1821.0 | III | | 1 | 25 | 86 | | | | | | PALE | 1821.0 | 1821.0 | III | | 2 | 25U | 86U | | | | | | SGMR | 1821.0 | 1835.0 | III | N | 2 | 30 | 80 | | | | | | PALE | 1834.0 | 1835.0 | III | | 1 | 25U | 55U | | | | 1936 | 2400 | HIRA | | | | | • | | | | | | 2040 | | CULG | | | | | | | | | | | | | | | | | | | | | | | 8 | 0000 | 0725 | CULG | | | | | | | | | | | 0439 | | ONDR | | | | | | | | | | | 0000 | | HIRA | 0622.0 | 0622.0 | III | В | 1 | 120 | 220 | | | | | | HIRA | 0721.5 | 0722.0 | III | В | 1 | 110 | 380 | | | | 0550 | 1200 | IZMI | 0721.7 | 0722.1 | III | G | 2 | 125 | 270x | | | | | | HIRA | 0728.5 | 0729.0 | III | В | 1 | 25x | 280 | | | | | | IZMI | 0728.7 | 0729.0 | 111 | В | 2 | 25X | 160 | | | | | | LEAR | 0856.0 | 0857.0 | 111 | | 1 | 25 | 111 | | | | | | SVTO | 0856.0 | 0859.0 | III | | 2 | 25U | 82U | | | | | | HIRA | 0856.5 | 0857.0 | 111 | В | 1 | 30 | 160 | | | | | | IZMI | 0856.8 | 0857.1 | III | В | 2 | 25X | 130 | | | | | | IZMI | 0857.0 | 0857.4 | V | | 2 | 25X | 40 | | | | | | IZMI | 0943.2 | 0943.5 | III | В | 1 | 45 | 95 | | MAY | | | ATION | | <b>.</b> | | VENT | | | FREQUI | | | |-----|---------------|----------|--------------|-------------------|-------------------|-------------------|------------------|--------------|----------------|----------------|----------| | ay | Start<br>(UT) | End (UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | 08 | | | CVTO | 1220.0 | 1220.0 | 111 | | 1 | 25 | 57 | | | 10 | 1935 | 2400 | SVTO<br>HIRA | 1220.0 | 1220.0 | 111 | | | 25 | 71 | | | | 2040 | | CULG | | | | | | | | | | | 2040 | 2400 | COLG | | | | | | | | | | 09 | 0000 | 0725 | CULG | | | | | | | | | | | 0437 | | ONDR | | | | | | | | | | | 0609 | | IZMI | 0622.6 | 0719.3 | I | S | 2 | 190 | 270x | | | | 0000 | | HIRA | 0816.0 | 0816.5 | III | В | 1 | 300 | 450 | | | | | | SVTO | 0856.0 | 0856.0 | III | | 1 | 25 | 38 | | | | 2040 | 2400 | CULG | | | | | | | | | | | 1934 | | HIRA | 2126.0 | 2126.5 | 111 | В | 1 | 80 | 210 | | | | | | HIRA | 2128.5 | 2129.0 | III | В | 1 | 80 | 210 | | | | | | | | | | | | | | | | 10 | 0000 | 0725 | CULG | 0141.0 | 0302.0 | CONT | | 1 | 35 | 150 | | | | | | CULG | 0359.0 | 0527.0 | CONT | | 1 | 35 | 150 | | | | 0000 | 0934 | HIRA | 0429.0 | 0429.5 | ΙΙΙ | В | 1 | 200 | 320 | | | | | | HIRA | 0446.0 | 0446.5 | III | В | 2 | 90 | 500 | | | | | | LEAR | 0449.0 | 0936.0 | CONT | | 1 | 45 | 175 | | | | | | SVTO | 0500.0 | 1320.0 | CONT | | 1 | <b>32</b> U | <b>82</b> U | | | | 0600 | 1200 | IZMI | 0721.7 | 0722.6 | 111 | GG | 2 | 150 | 270X | | | | | | HIRA | 0722.0 | 0722.5 | 111 | В | 1 | 90 | 330 | | | | | | IZMI | 0934.2 | 0939.2 | III | G | 1 | 45 | 100 | | | | | | SVTO | 0940.0 | 0941.0 | III | | 1 | 113U | 1640 | | | | | | IZMI | 0940.7 | 0941.3 | III | GG,C | 2 | 100 | 270X | | | | | | IZMI | 0944.8 | 0944.8 | 111 | В | 2 | 150 | 270 | | | | | | IZMI | 1026.9 | 1200.0D | III | N | 1 | 45 | 95 | | | | | | IZMI | 1122.0U | 1200.0D | I | S | 2 | 160 | 270x | | | | | | IZMI | 1147.8 | 1148.1 | III | G | 2 | 175 | 270 | | | | | | SVTO | 1242.0 | 1242.0 | III | | 1 | 25U | 54U | | | | 0436 | 1719 | ONDR | 1454.3 | 1457.0 | DCIM | | 1 | 800X | 4500X | | | | | | HOLL | 1456.0 | 1518.0 | ΙΙ | | 1 | 28 | 120 | ESS 0745 | | | | | SVTO | 1458.0 | 1517.0 | ΙΙ | | 1 | 36 | 82 | ESS 0526 | | | | | SGMR | 1504.0 | 1507.0 | ΙΙ | | 1 | 38 | 50 | ESS 0650 | | | | | SGMR | 1530.0 | 1830.0 | CONT | | 1 | 30 | 60 | | | | | | HOLL | 1557.0 | 1558.0 | 111 | | 1 | 25 | 40 | | | | | | HOLL | 1612.0 | 1616.0 | 111 | | 1 | 25 | 52 | | | | 1933 | 2400 | HIRA | 2021.0 | 2022.5 | 111 | G | 1 | 25X | 200 | | | | | | HOLL | 2317.0 | 2317.0 | III | | 1 | 25 | 88 | | | | 2040 | 2400 | CULG | 2317.0 | 2317.0 | III | В | 1 | 30 | 130 | | | | | | HOLL | 2330.0 | 2335.0 | III | | 1 | 25 | 71 | | | | | | CULG | 2355.0 | 2355.0 | III | В | 1 | 40 | 100 | | | 4.4 | | | | 0004 0 | 0007.0 | | | | 25 | 00 | | | 11 | 0000 | 0725 | HOLL | 0006.0 | 0006.0 | III | В | 1 | 25 | 92<br>110 | | | | 0000 | 0123 | CULG | 0007.0 | 0007.0 | III | В | 1 | 28<br>70 | 110 | | | | | | CULG | 0100.0 | 0116.0 | III | N | 1 | 30<br>25 | 100 | | | | | | HOLL | 0107.0 | 0109.0 | III | D | 1<br>1 | | 87<br>100 | | | | | | CULG<br>CULG | 0151.0<br>0349.0 | 0151.0<br>0349.0 | III<br>III | B<br>B | 1 | 30<br>50 | 100<br>180 | | | | 0000 | 0034 | HIRA | 0349.0 | 0349.0 | III | В | 2 | 25X | 400 | | | | 0558 | | IZMI | 0549.0<br>0558.0E | 0349.3<br>0755.0U | I | S,C | 2 | 25X<br>45 | 270X | | | | סננט | 1200 | IZMI | 0613.1 | 0614.4 | III | | 1 | 45<br>45 | 270X<br>95 | | | | | | LEAR | 0626.0 | 0744.0 | CONT | G,FS | 1 | 45<br>25 | 180 | | | | | | IZMI | 0626.1 | 0634.6 | III | GG | 2 | 45 | 100 | | | | | | CULG | 0628.0 | 0720.0D | III | N | 1 | 30 | 170 | | | | | | IZMI | 0638.9 | 0720.0U | III | S | 2 | 30 | 190 | | | | | | SVTO | 0642.0 | 0744.0 | CONT | 5 | 1 | 25U | 180U | | | | 0435 | 1720 | ONDR | 0705.5 | 0717.4 | DCIM | GG | 3 | 800X | 1827 | | | | 0433 | 1120 | IZMI | 0703.3 | 0812.3 | III | В | 3<br>1 | 45 | 95 | | | | | | IZMI | 0818.7 | 0818.8 | III | В | 1 | 45<br>45 | 95<br>95 | | | | | | IZMI | 0834.1 | 0834.2 | III | В | 1 | 45 | 95 | | | | | | SVTO | 0837.0 | 0838.0 | III | 5 | 1 | 45<br>25 | 82 | | | | | | IZMI | 0837.0 | 0838.1 | III | G | 2 | 40 | 95 | | | | | | | | | | | 1 | | | | | | | | IZMI | 0910.0U | 1200.0D<br>0921.4 | I | N | | 200<br>25 | 270<br>250 | | | | | | IZMI | 0920.5 | | III | G,C | 2 | | | | | | | | SVTO | 0921.0 | 0924.0 | III | c | 1 | 25U<br>45 | 180U | | | | | | IZMI | 0924.0 | 0924.2 | III | G | 2 | 45<br>130 | 95<br>215 | | | | | | IZMI | 1031.8 | 1031.9 | III | G | 2 | 130<br>45 | 215 | | | | | | IZMI<br>HOLL | 1051.5<br>1350.0 | 1051.7<br>0133.0 | III<br>III | G<br>N | 1<br>1 | 45<br>25 | 90<br>180 | | | | | | | 133011 | 111122 11 | 111 | -4 | | /> | IAH | | MAY | ( | OBSERV | | | | | VENT | _ | _ | FREQUI | | | |--------|--------|------|------------------|------------------|------------------|-------------------|------------------|------------------|----------------|----------------|---------| | ) a.e. | Start | | S+c | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | ay | (01) | (UT) | Sta | (01) | (01) | | Kellidi KS | (1-3) | (MIZ) | (MNZ) | | | 1 | | | SGMR | 1350.0 | 1357.0 | III | | 1 | 30 | 80 | | | | | | SVTO | 1350.0 | 1357.0 | III | | 2 | 25 | 180 | | | | | | SVTO | 1416.0 | 1731.0 | III | N | 2 | 25 | 180 | | | | | | SGMR | 1420.0 | 1913.0 | III | N | 2 | 30 | 80 | | | | | | PALE | 1646.0 | 2242.0 | III | N | 1 | 25 | 180 | | | | 1072 | 2/00 | SGMR | 2030.0 | 2031.0 | III | В | 1 | 30<br>25v | 60 | | | | 1932 | 2400 | HIRA | 2031.0 | 2031.5 | III | В | 1 | 25X | 210 | | | | 20/0 | 2/00 | HIRA | 2047.0 | 2047.5<br>2341.0 | III | В | 1 | 25X | 210 | | | | 2040 | 2400 | CULG | 2047.0 | 2341.0 | III | N | 1<br>2 | 28<br>50 | 180<br>370 | | | | | | HIRA | 2103.5<br>2109.0 | 2104.0 | III | B<br>B | 1 | 25X | 200 | | | | | | HIRA<br>LEAR | 2332.0 | 2340.0 | III<br>III | ь | 1 | 25 | 147 | | | | | | PALE | 2332.0 | 2340.0 | III | | 1 | 25U | 87U | | | | | | HOLL | 2355.0 | 2355.0 | III | | i | 25 | 88 | | | | | | | | | | | | | | | | 2 | 0000 | 0745 | LEAR | 0116.0 | 0905.0 | CONT | | 1 | 25 | 180 | | | | 0000 | 0/15 | CULG | 0131.0 | 0208.0 | III | N | 1 | 35<br>25 | 170 | | | | | | PALE | 0150.0 | 0338.0 | III | N | 2 | 25<br>20 | 180 | | | | | | CULG | 0226.0<br>0226.0 | 0226.0<br>0226.0 | III<br>III | В | 3<br>3 | 20<br>25 | 350<br>180 | | | | 0000 | 0035 | LEAR<br>HIRA | 0226.5 | 0227.0 | III | В | 3 | 25X | 500 | | | | 0000 | 0933 | CULG | 0229.0 | 0715.0D | III | S,C | 1 | 30 | 160 | | | | | | LEAR | 0446.0 | 0450.0 | III | 5,5 | 2 | 25 | 150 | | | | | | SVTO | 0447.0 | 0455.0 | III | | 1 | 25 | 132 | | | | | | HIRA | 0447.5 | 0449.0 | III | G | i | 25X | 160 | | | | | | HIRA | 0455.0 | 0456.0 | III | В | i | 25X | 140 | | | | | | SVTO | 0524.0 | 0849.0 | III | N | 2 | 25 | 180 | | | | | | HIRA | 0529.0 | 0529.5 | III | В | 1 | 25x | 120 | | | | | | CULG | 0535.0 | 0535.0 | III | В | 1 | 25 | 140 | | | | | | HIRA | 0535.0 | 0535.5 | III | В | 2 | 25X | 200 | | | | | | LEAR | 0535.0 | 0535.0 | 111 | | 2 | 25 | 164 | | | | | | SVTO | 0552.0 | 0905.0 | CONT | | 1 | 25U | 121U | | | | 0601 | 1200 | IZMI | 0601.0E | 1200.0D | I | s,c | 2 | 45 | 270X | | | | | | IZMI | 0647.2 | 0647.4 | III | G | 2<br>2 | 110 | 270X | | | | | | IZMI | 0652.7 | 0652.9 | III | В | 2 | 25X | 150 | | | | | | IZMI | 0659.0U | 1143.0 | 111 | N | 1 | 45 | 95 | | | | | | IZMI | 0731.2 | 0731.9 | III | G | 2 | 35 | 215 | | | | | | IZMI | 0733.0 | 0738.3 | III | G | 2 | 45 | 95 | | | | | | HIRA | 0734.5 | 0744.0 | III | В | 1 | 50 | 200 | | | | | | LEAR | 0740.0 | 0745.0 | III | | 2 | 25 | 180 | | | | | | IZMI | 0740.2 | 0744.8 | III | GG | 2 | 25X | 240 | | | | | | IZMI | 0844.1 | 0844.2 | III | B,C | 2 | 45 | 145 | | | | | | IZMI | 0849.3 | 0849.4 | III | B,C | 2<br>2 | 40 | 270x | | | | | | IZMI | 0907.0 | 0907.1 | III | G | | 210 | 270X | | | | | | SVTO | 0924.0 | 0927.0 | III | | 1 | 25 | 56 | | | | | | IZMI | 0924.5 | 0929.2 | III | GG | 2 | 25X | 95 | | | | | | IZMI | 0940.9 | 0941.3 | III | G | 2 | 75<br>25 | 270X | | | | | | IZMI | 1018.6 | 1018.8 | III | G | 2<br>2<br>2<br>2 | 25<br>25 v | 95<br>05 | | | | | | IZMI | 1042.0 | 1042.3 | III | G | 2 | 25X | 95<br>180 | | | | | | SVTO | 1042.0 | 1512.0 | III | N | 2 | 25 | 180 | | | | | | IZMI | 1045.7 | 1046.0 | III | G<br>C ES | 2<br>2 | 25<br>25 v | 95<br>260 | | | | | | IZMI | 1052.5 | 1052.9 | III | G,FS | 2 | 25X | 260 | | | | | | IZMI | 1059.7<br>1103.7 | 1106.8<br>1103.8 | III<br>III | GG,FS | 2<br>2 | 40<br>120 | 95<br>270x | | | | | | I ZM I<br>I ZM I | 1103.7 | 1105.8 | III | G<br>GG | 2 | 120<br>25X | 270X<br>270X | | | | | | SGMR | 1104.5 | 1105.5 | III | du | 1 | 30 | 270X<br>80 | | | | | | IZMI | 1111.0 | 1112.8 | III | GG,FS | 2 | 25X | 270X | | | | | | SGMR | 1111.0 | 1111.0 | III | 44,10 | 1 | 30 | 80 | | | | | | IZMI | 1111.4 | 1112.0 | v | | 2 | 25x | 30 | | | | | | ONDR | 1208.2 | 1208.3 | DCIM | G | 2 | 800X | 2000X | | | | 0433 | 1721 | ONDR | 1208.2 | 1208.3 | DCIM | G | 2 | 2000X | 4500X | | | | | | SGMR | 1240.0 | 1244.0 | III | - | 2 | 30 | 80 | | | | | | SVTO | 1243.0 | 1244.0 | III | | 2 | 25 | 180 | | | | | | HOLL | 1244.0 | 1245.0 | iii | | 1 | 25 | 126 | | | | | | HOLL | 1312.0 | 2315.0 | CONT | | i | 64 | 87 | | | | | | SVTO | 1312.0 | 1407.0 | CONT | | i | 25U | 82U | | | | | | HOLL | 1355.0 | 1356.0 | III | | i | 25 | 137 | | | | | | SVTO | 1355.0 | 1356.0 | III | | i | 25 | 134 | | | | | | | | 1637.0 | | | i | 25 | 128 | | MAY | ( | DBSERV | | | <b>.</b> | | VENT | | | FREQUI | | <b>.</b> | |----|---------------|------|--------------|------------------|------------------|-------------------|------------------|------------------|----------------|----------------|----------| | ay | Start<br>(UT) | | Sta. | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | | | | COMP | 1/7/ 0 | 1/75 0 | 117 | | 1 | 30 | 45 | | | 12 | | | SGMR<br>SVTO | 1634.0<br>1634.0 | 1635.0<br>1635.0 | III<br>III | | 1 | 25 | 141 | | | | | | HOLL | 1715.0 | 1724.0 | ٧ | | 2 | 25 | 180 | | | | | | SGMR | 1715.0 | 1717.0 | v | | 2 | 30 | 80 | | | | | | SVTO | 1715.0 | 1720.0 | v | | 2 | 25 | 180 | | | | | | SGMR | 1718.0 | 1723.0 | ĬII | | 1 | 30 | 80 | | | | | | HOLL | 1749.0 | 1749.0 | III | | 1 | 25 | 55 | | | | | | SGMR | 1749.0 | 1749.0 | III | | 1 | 30 | 50 | | | | | | SGMR | 1753.0 | 1753.0 | III | | 1 | 30 | 50 | | | | 2045 | 2400 | CULG | 2045.0E | 2235.0 | CONT | | 1 | 40 | 110 | | | | | | CULG | 2305.0 | 2305.0 | 111 | G | 1 | 45 | 130 | | | | | | HOLL | 2305.0 | 2305.0 | III | | 1 | 25 | 84 | | | | | | CULG | 2327.0 | 2329.0 | III | G | 3<br>2<br>3<br>3 | 18X | 650 | | | | | | HOLL | 2327.0 | 2330.0 | III | | 2 | 25 | 180 | | | | | | LEAR | 2327.0 | 2329.0 | V | | 3 | 25 | 180 | | | | | | PALE | 2327.0 | 2329.0 | V | | | 25 | 180 | | | | 4074 | 0100 | SGMR | 2327.0 | 2329.0 | III | _ | 1 | 30 | 75 | | | | 1931 | 2400 | HIRA | 2327.0 | 2330.0 | III | В | 3 | 25X | 500 | | | | | | CULG | 2332.0 | 2336.0 | III | G | 1 | 30 | 180 | | | | | | HOLL | 2332.0 | 2336.0 | III | | 1 | 25 | 118 | | | | | | LEAR | 2332.0 | 2337.0 | III | | 1<br>1 | 25<br>25 | 180 | | | | | | PALE<br>HIRA | 2333.0 | 2335.0 | III | c | | 25X | 180 | | | | | | CULG | 2333.5<br>2340.0 | 2336.0<br>2345.0 | III<br>II | G<br>FN,H | 2<br>1 | 23 | 120<br>90 | | | | | | CULG | 2340.0 | 2348.0 | II | SH,H | 2 | 40 | 180 | ESS 950 | | | | | CULG | 2340.0 | 2400.0D | IV | FS | 1 | 40 | 260 | L33 730 | | | | | HOLL | 2340.0 | 2345.0 | 111 | | i | 25 | 130 | | | | | | LEAR | 2340.0 | 0137.0 | IV | | i | 25 | 180 | | | | | | HIRA | 2341.0 | 0013.0 | IV | | 2 | 60 | 270 | | | | | | HIRA | 2343.0 | 2344.0 | III | В | 3 | 25X | 240 | | | | | | PALE | 2347.0 | 0108.0 | CONT | | 1 | 25 | 180 | | | 13 | 0000 | 0715 | CULG | 0000.0E | 0056.0 | IV | FS | 1 | 40 | 260 | | | | 0000 | | HIRA | 0145.5 | 0146.0 | III | В | 1 | 100 | 230 | | | | | | CULG | 0146.0 | 0146.0 | III | В | 1 | 60 | 180 | | | | | | CULG | 0302.0 | 0305.0 | ΙΙ | FN | 1 | 75 | 520 | SWF | | | | | CULG | 0302.0 | 0305.0 | ΙΙ | SH | 1 | 140 | 750 | ESS 1200 | | | | | HIRA | 0302.0 | 0306.0 | ΙΙ | | 2 | 90 | 530 | | | | | | HIRA | 0302.0 | 0306.0 | ΙΙ | | 2 | 130 | 1100 | | | | | | LEAR | 0303.0 | 0305.0 | ΙΙ | | 1 | 76 | 180 | ESS 0726 | | | | | PALE | 0303.0 | 0308.0 | ΙΙ | | 1 | 34 | 180 | ESS 0700 | | | | | HIRA | 0306.0 | 0310.0 | III | G | 2 | 100 | 600 | | | | | | LEAR | 0306.0 | 0308.0 | 111 | | 1 | 104 | 180 | | | | | | CULG | 0307.0 | 0308.0 | III | G | 1 | 100 | 480 | | | | | | CULG | 0310.0 | 0437.0 | IV | FS | 1 | 30U | 200 | | | | | | LEAR | 0310.0 | 0455.0 | IV | | 1 | 25 | 180 | | | | 0/70 | 4707 | HIRA | 0315.0 | 0345.0 | IV | | 2 | 90 | 680 | | | | 0432 | 1/23 | ONDR | 0//7 0 | 0//5 0 | | • | 4 | 70 | -00 | | | | | | CULG | 0443.0 | 0445.0 | III | G | 1 | 30<br>35 | 90<br>1// | | | | | | LEAR | 0443.0 | 0450.0 | III | | 1 | 25<br>25 | 144 | | | | | | SVTO | 0443.0 | 0449.0 | III | В | 1 | 25<br>25x | 146 | | | | | | HIRA | 0443.5 | 0444.0 | III | В | 1 | | 110<br>160 | | | | | | HIRA<br>CULG | 0447.5<br>0450.0 | 0450.0<br>0450.0 | III | B<br>B | 2<br>1 | 25X<br>20 | 160<br>130 | | | | | | SVTO | 0430.0 | 0543.0 | III | | 1 | 20<br>25 | 180 | | | | | | CULG | 0534.0 | 0543.0 | III | N<br>G | 1 | 20 | 180 | | | | | | LEAR | 0534.0 | 0540.0 | III | • | 1 | 25 | 180 | | | | | | HIRA | 0534.5 | 0539.0 | III | G | i | 40 | 310 | | | | 0600 | 1200 | IZMI | 0600.0E | 1200.0D | I | S | i | 160 | 270X | | | | 5550 | | IZMI | 0715.7 | 0717.8 | iII | В | i | 45 | 95 | | | | | | IZMI | 0820.5 | 0820.5 | III | В | i | 50 | 70 | | | | | | HIRA | 0825.0 | 0826.0 | III | В | 3 | 40 | 210 | | | | | | IZMI | 0825.0 | 0825.8 | III | GG | 2 | 25x | 270x | | | | | | LEAR | 0825.0 | 0825.0 | III | - <del>-</del> | 2 | 25 | 180 | | | | | | SVTO | 0825.0 | 0825.0 | III | | 2 | 25 | 180 | | | | | | IZMI | 0825.5 | 0825.8 | v | G | 2 | 45 | 110 | | | | | | IZMI | 1042.5 | 1043.8 | III | Ğ | 1 | 45 | 70 | | | | | | PALE | 1915.0 | 1922.0 | III | | i | 25 | 55 | | | | | | HOLL | 1916.0 | 2112.0 | III | N | 1 | 25 | 141 | | MAY | | OBSERVATIO | | | | VENT | _ | _ | FREQU | | | |-----|------------|--------------|----------|------------------|-------------------|------------------|--------------|----------------|----------------|-----------------| | Dav | Start End | | Start | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | Jay | (UT) (UT | ) Sta | | (01) | | | (1-3) | (4112) | (MILZ) | | | 13 | | SGM | | 1925.0 | 111 | | 1 | 30 | 60 | | | | 1930 2400 | | | 2224.0 | | 6 | 1 | 40U | 150 | | | | 2045 2400 | CUL<br>SGM | | 2329.0 | III | S | 1 | 30 | 150<br>75 | | | | | PAL | | 2347.0 | III | | 2 | 25 | 180 | | | | | HOL | | 0110.0 | CONT | | 1 | 25 | 180 | | | 14 | | HOL | L 0107.0 | 0109.0 | III | | 1 | 25 | 180 | | | 14 | | LEA | | 0340.0 | III | | i | 53 | 144 | | | | 0000 0715 | | | 0340.0 | III | G | 1 | 50U | 150 | | | | 0000 0937 | HIR | A 0336.0 | 0338.5 | III | G | 1 | 50 | 150 | | | | 0550 1200 | | | 0750.0U | I | N | 2 | 130 | 270X | | | | | IZM | | 0750.0 | III | N | 1 | 45<br>25 y | 95<br>05 | | | | | IZM | | 0844.0 | III | В | 2<br>2 | 25X<br>45 | 95<br>160 | | | | | I ZM<br>I ZM | | 1012.8<br>1134.2 | III<br>III | B<br>G,C | 2 | 25X | 270X | | | | | SVT | | 1134.0 | III | 4,0 | 1 | 25 | 151 | | | | | SVT | | 1226.0 | III | | ż | 25 | 81 | | | | | SGM | R 1213.0 | 1213.0 | III | | 1 | 30 | 55 | | | | 0431 1724 | OND | R 1215.2 | 1217.0 | DCIM | GG,SP | 2 | 800x | 1212 | | | | | HOL | | 1334.0 | III | | 2 | 25 | 176 | | | | | SGM | | 1350.0 | III | N | 2 | 30<br>35 | 80 | | | | | SVT<br>HOL | | 1338.0<br>1521.0 | V<br>I I I | N | 3<br>2 | 25<br>25 | 180<br>141 | | | | | SVT | | 1350.0 | III | N | 2 | 25 | 83 | | | | | SGM | | 1439.0 | III | N | 2 | 30 | 80 | | | | | SVT | | 1416.0 | III | | 1 | 25 | 83 | | | | | SVT | | 1439.0 | III | | 3 | 25 | 180 | | | | | SVT | | 1611.0 | III | | 1 | 25 | 81 | | | | | HOL | | 1634.0 | III | | 2 | 25 | 142 | | | | | PAL | | 1632.0 | III | | 1 | 25 | 145 | | | | | SGM<br>SVT | | 1634.0<br>1632.0 | V<br>I I I | | 3<br>2 | 30<br>25 | 80<br>139 | | | | | HOL | | 1907.0 | III | | 1 | 25 | 50 | | | | | HOL | | 2150.0 | III | | i | 25 | 180 | | | | | PAL | | 2150.0 | III | | 1 | 25 | 180 | | | | 1929 2400 | HIR | | 2145.5 | III | В | 1 | 25X | 110 | | | | 2045 2400 | | | 2339.0 | III | N | 1 | 25 | 180 | | | | | HIR | | 2149.0 | III | В | 1 | 25X | 210 | | | | | SGM | | 2148.0<br>2150.5 | III | D | 1<br>1 | 30<br>25x | 70<br>210 | | | | | HIR<br>HIR | | 2208.5 | III<br>III | B<br>G | 1 | 120 | 300 | | | | | HOL | | 2342.0 | III | N | i | 25 | 170 | | | | | PAL | | 2220.0 | III | | i | 25 | 86 | | | | | SGM | R 2219.0 | 2220.0 | 111 | | 1 | 30 | 80 | | | | | HIR | | 2220.0 | III | В | 2 | 25x | 230 | | | | | SGM | | 2233.0 | III | | 2 | 30 | 80 | | | | | PAL | | 2253.0 | III | В | 1 | 25<br>25x | 85<br>300 | | | | | HIR<br>HIR | | 2248.5<br>2249.0 | 111<br>111 | B<br>B | 2<br>2 | 25X<br>25X | 300<br>300 | | | | | HIE | | 2253.0 | III | В | 2 | 25X | 190 | | | | | HIR | | 2312.5 | III | В | 2 | 25X | 110 | | | | | LEA | | 2312.0 | III | - | 1 | 28 | 103 | | | | | PAL | | 2312.0 | 111 | | 1 | 250 | 87U | | | 15 | | PAL | E 0120.0 | 0120.0 | 111 | | 1 | 25 | 150 | | | - | | HOL | L 0121.0 | 0121.0 | III | | 1 | 25 | 123 | | | | | LEA | R 0121.0 | 0121.0 | 111 | | 1 | 25 | 180 | | | | 0000 071 | | | 0121.0 | III | В | 2 | 30 | 180 | | | | 0000 0938 | | | 0121.5 | III | В | 2 | 25X | 250 | | | | | CUL | | 0259.0 | UNCLF | EN | 1 | 400<br>25 | 750<br>150 | Ecc 1000 | | | | CUL | | 0313.0<br>0315.0 | II<br>II | FN<br>SH | 3<br>1 | 25<br>50 | 150<br>300 | ESS 1000<br>SWF | | | | HIR | | 0304.5 | II | 311 | 2 | 50<br>50 | 130 | JWI | | | | HIR | | 0304.5 | II | | 2 | 90 | 300 | | | | | LEA | | 0302.0 | II | | 2<br>2 | 73 | 75 | ESS 1300 | | | | PAL | | 0303.0 | II | | 2 | 73 | 75 | ESS 1033 | | | | PAL | E 0307.0 | 0313.0 | III | | 1 | 25U | 85U | | | | | LE/ | | 0313.0 | 111 | | 1 | 25 | 106 | | MAY | ( | | ATION | | <b>.</b> | | EVENT | | | FREQUE | | - ' | |----|-------|-------|--------|----------|---------|-------------------|---------|--------------|-----------|----------|----------| | | Start | | C+- | Start | End | Spectral<br>Class | | Int<br>(1-3) | Lower | Upper | Remarks | | ay | (01) | (UT) | Sta | (UT) | (UT) | Class | Remarks | (1-3) | (MHz) | (MHz) | | | 15 | | | CULG | 0311.0 | 0348.0 | IV | | 1 | 50 | 300 | | | | | | HIRA | 0311.0 | 0344.0 | IV | | 1 | 30 | 300 | | | | 0430 | 1725 | ONDR | | | | | | | | | | | | | CULG | 0448.0 | 0453.0 | 111 | G | 2 | 20 | 180 | | | | | | HIRA | 0449.0 | 0450.0 | III | G | 2 | 25X | 290 | | | | | | LEAR | 0449.0 | 0450.0 | III | _ | 1 | 25 | 180 | | | | | | SVTO | 0449.0 | 0458.0 | III | | 2 | 25 | 180 | | | | | | LEAR | 0455.0 | 0457.0 | III | | 1 | 25 | 180 | | | | | | HIRA | 0455.5 | 0456.5 | III | В | 2 | 25x | 700 | | | | | | CULG | 0456.0 | 0458.0 | III | G | 3 | 20 | 650 | | | | | | HIRA | 0457.0 | 0458.5 | 111 | G | 3 | 25X | 390 | | | | | | HIRA | 0516.0 | 0516.5 | III | В | 1 | 140 | 240 | | | | 0558 | 1200 | IZMI | 0603.6 | 0604.0 | 111 | G | 2 | 46 | 120 | | | | 0550 | 1200 | IZMI | 0604.8 | 0605.7 | 111 | GG | 2 | 25X | 270x | | | | | | CULG | 0605.0 | 0609.0 | 111 | G | 2 | 20 | 300 | | | | | | HIRA | 0605.0 | 0605.5 | III | В | 1 | 25x | 260 | | | | | | | | 0608.0 | | Ь | 1 | 25 | 180 | | | | | | LEAR | 0605.0 | | III | | | | | | | | | | SVTO | 0605.0 | 0608.0 | III | | 1 | 25 | 180 | | | | | | HIRA | 0607.5 | 0608.5 | III | В | 1 | 30<br>25v | 300 | | | | | | IZMI | 0607.5 | 0608.4 | III | GG | 2 | 25X | 270X | | | | | | IZMI | 0648.6 | 0649.0 | III | G | 1 | 75<br>25 | 95 | | | | | | SVTO | 0736.0 | 0739.0 | III | _ | 1 | 25 | 180 | | | | | | IZMI | 0736.4 | 0736.7 | III | В | 2 | 40 | 65 | | | | | | HIRA | 0738.5 | 0739.0 | III | В | 1 | 80 | 110 | | | | | | IZMI | 0738.7 | 0739.2 | III | GG | 2 | 25x | 125 | | | | | | IZMI | 0827.3 | 0827.5 | III | G | 2 | 130 | 175 | | | | | | IZMI | 0832.7 | 0833.2 | 111 | G,FS | 1 | 45 | 90 | | | | | | IZMI | 0834.8 | 0836.7 | III | GG | 2 | 40 | 90 | | | | | | IZMI | 0843.6 | 0847.1 | 111 | GG | 1 | 40 | 90 | | | | | | IZMI | 0913.0 | 0913.8 | III | В | 1 | 45 | 70 | | | | | | SVTO | 0919.0 | 0920.0 | III | | 1 | 25 | 56 | | | | | | IZMI | 0919.1 | 0920.3 | 111 | GG | 2 | 25X | 95 | | | | | | IZMI | 0921.7 | 0923.1 | III | GG | 2 | 45 | 100 | | | | | | SVTO | 1023.0 | 1024.0 | III | | 1 | 25 | 64 | | | | | | IZMI | 1023.6 | 1023.9 | III | В | 1 | 45 | 95 | | | | | | IZMI | 1121.5 | 1121.6 | III | В | ż | 45 | 100 | | | | | | SVTO | 1237.0 | 1237.0 | III | | 1 | 25 | 82 | | | | | | SVTO | 1332.0 | 1333.0 | 111 | | i | 25 | 54 | | | | | | SVTO | 1635.0 | 1635.0 | 111 | | i | 25 | 63 | | | | | | HOLL | 1914.0 | 1914.0 | 111 | | i | 25 | 66 | | | | | | PALE | 1914.0 | 1914.0 | III | | i | 25 | 63 | | | | 1020 | 2/00 | | | | | В | 1 | 25x | 240 | | | | 1929 | | HIRA | 2120.5 | 2121.0 | III | В | | | | | | | 2045 | 2400 | CULG | 2121.0 | 2121.0 | III | В | 1 | 50U | 180 | | | ., | 0000 | 0740 | 0111.0 | 0255 0 | 0/0/ 0 | | 0.0 | 4 | / 011 | 1/0 | | | 16 | 0000 | | CULG | 0255.0 | 0404.0 | III | s,c | 1 | 40U | 160 | | | | 0429 | 1/26 | ONDR | 0554 | 0740 - | | ā | | | 4=- | | | | 0155 | 4000 | CULG | 0551.0 | 0710.0D | I | S | 1 | 70<br>70 | 150 | | | | 0600 | 1200 | IZMI | 0600.0E | 1100.00 | I | N | 1 | 70 | 270 | | | | | | CULG | 0618.0 | 0618.0 | III | В | 1 | 30 | 170 | | | | | | IZMI | 0618.1 | 0618.6 | 111 | G | 2 | 45 | 150 | | | | 0000 | 0939 | HIRA | 0639.0 | 0639.5 | III | В | 1 | 500 | 1100 | | | | | | CULG | 0647.0 | 0647.0 | 111 | В | 1 | 30 | 170 | | | | | | IZMI | 0647.3 | 0647.8 | 111 | G | 2 | 50 | 237 | | | | | | HIRA | 0740.0 | 0740.5 | 111 | В | 1 | 200 | 280 | | | | | | IZMI | 0740.0 | 0740.4 | III | G | 2 | 250 | 270X | | | | | | SVTO | 0818.0 | 0819.0 | III | | 1 | 25 | 66 | | | | | | HIRA | 0818.5 | 0819.0 | III | В | 1 | 30 | 80 | | | | | | IZMI | 0818.6U | 0819.0 | III | Ğ | | 25X | 75 | | | | | | IZMI | 0826.2 | 0827.0 | III | Ğ | 2<br>2 | 45 | 168 | | | | | | IZMI | 0914.2 | 0914.7 | III | Ğ | 1 | 70 | 90 | | | | | | SVTO | 0915.0 | 0915.0 | 111 | - | | 25 | 147 | | | | | | IZMI | 0915.3 | 0915.6 | III | G,C | 2<br>2 | 25X | 147 | | | | OSEO | 1200 | | | | | | 1 | | | | | | 0559 | 1200 | IZMI | 1026.2 | 1026.4 | III | В | | 25X | 60<br>80 | | | | | | HOLL | 1429.0 | 1430.0 | III | | 1 | 25 | 89 | | | | | | SGMR | 1429.0 | 1430.0 | III | | 1 | 30 | 60 | | | | | | SVTO | 1429.0 | 1430.0 | III | | 1 | 25 | 180 | | | | | | HOLL | 1537.0 | 1538.0 | III | | 1 | 32 | 86 | | | | | | SVTO | 1537.0 | 1537.0 | III | | 1 | 25 | 81 | | | | | | HOLL | 1540.0 | 1548.0 | ΙΙ | | 1 | 25 | 139 | ESS 0448 | ### SOLAR RADIO EMISSION Spectral Observations MAY | ( | | /ATION | | | | VENT | | | FREQUI | | | |----|---------------|----------|------|---------------|-------------|-------------------|------------------|--------------|----------------|----------------|----------| | ay | Start<br>(UT) | End (UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | 16 | | | SVTO | 1540.0 | 1600.0 | II | | 1 | 29 | 153 | ESS 0675 | | 10 | | | HOLL | 1548.0 | 1600.0 | II | | i | 25 | 88 | ESS 0448 | | | | | SGMR | 1552.0 | 1600.0 | 111 | | i | 30 | 50 | L33 0440 | | | | | HOLL | 1555.0 | 1600.0 | 11 | | i | 25 | 139 | ESS 0448 | | | | | HOLL | 1603.0 | 1603.0 | III | | i | 25 | 73 | L33 0440 | | | | | HOLL | 1850.0 | 1851.0 | III | | i | 25 | 57 | | | | 2050 | 24.00 | CULG | 2117.0 | 2142.0 | III | N | 1 | 25 | 160 | | | | 2050 | 2400 | | | | | N | 1 | | | | | | | | HOLL | 2118.0 | 2120.0 | III | | - | 25<br>25 | 135 | | | | 4000 | 2/00 | PALE | 2119.0 | 2120.0 | III | ь. | 1 | 25<br>25 | 94 | | | | 1928 | 2400 | HIRA | 2119.0 | 2120.0 | III | В | 1 | 25X | 130 | | | | | | HOLL | 2128.0 | 2129.0 | III | | 1 | 25 | 97<br>07 | | | | | | PALE | 2128.0 | 2200.0 | III | N | 1 | 25 | 96 | | | | | | HIRA | 2128.5 | 2129.0 | III | В | 1 | 25X | 120 | | | | | | CULG | 2238.0 | 2245.0 | III | G | 2 | 20 | 180 | | | | | | HOLL | 2239.0 | 2244.0 | III | | 2 | 25 | 143 | | | | | | PALE | 2239.0 | 2244.0 | III | | 2 | 25 | 180 | | | | | | HIRA | 2240.0 | 2245.0 | III | G | 3 | 25X | 180 | | | | | | SGMR | 2240.0 | 2242.0 | III | | 2 | 30 | 70 | | | | | | CULG | 2256.0 | 2257.0 | III | G | 1 | 30 | 80 | | | 17 | | | HOLL | 0100.0 | 0107.0 | III | | 1 | 25 | 147 | | | | | | LEAR | 0100.0 | 0107.0 | III | | 1 | 25 | 140 | | | | | | PALE | 0100.0 | 0107.0 | III | | 1 | 25 | 120 | | | | 0000 | 0710 | CULG | 0100.0 | 0102.0 | III | G | 2 | 28 | 90 | | | | | | CULG | 0104.0 | 0107.0 | III | G | 2 | 35 | 140 | | | | 0000 | 0939 | HIRA | 0104.0 | 0107.0 | III | G | 2 | 40 | 120 | | | | | | HIRA | 0157.0 | 0157.5 | III | В | 2 | 25X | 90 | | | | | | LEAR | 0157.0 | 0346.0 | 111 | N | 1 | 25 | 116 | | | | | | CULG | 0158.0 | 0221.0 | III | N | 1 | 30 | 150 | | | | | | HIRA | 0300.5 | 0301.0 | III | В | 1 | 25X | 110 | | | | | | CULG | 0301.0 | 0347.0 | III | N | 1 | 25 | 90 | | | | | | PALE | 0341.0 | 0348.0 | III | | 1 | 25 | 55 | | | | 0/27 | 1727 | HIRA | 0346.0 | 0346.5 | III | В | 1 | 30 | 70 | | | | 0427 | 1/2/ | ONDR | 0447.0 | 0/50 0 | | • | 2 | 40 | 00 | | | | | | CULG | 0447.0 | 0450.0 | III | G | 2 | 18 | 90 | | | | | | HIRA | 0447.0 | 0449.5 | III | G | 2 | 25X | 160 | | | | | | LEAR | 0447.0 | 0449.0 | III | | 2 | 25 | 147 | | | | | | SVTO | 0447.0 | 0449.0 | III | _ | 1 | 25U | 84U | | | | | | CULG | 0456.0 | 0457.0 | III | G | 1 | 20 | 90 | | | | | | SVTO | 0548.0 | 0552.0 | III | | 1 | 25U | 82U | | | | | | HIRA | 0548.5 | 0549.0 | III | В | 1 | 50 | 130 | | | | | | HIRA | 0552.5 | 0553.0 | III | В | 1 | 25X | 110 | | | | | | IZMI | 0559.0E | 1200.0D | I | N | 1 | 130 | 270X | | | | | | IZMI | 0605.6 | 0606.1 | III | G | 1 | 45 | 61 | | | | | | IZMI | 0638.1 | 0638.7 | III | G | 1 | 40 | 90 | | | | | | SVTO | 0651.0 | 0729.0 | III | N | 1 | 25U | 84U | | | | | | CULG | 0657.0 | 0658.0 | III | G | 1 | 30 | 90 | | | | | | HIRA | 0657.0 | 0658.0 | 111 | В | 2 | 50 | 100 | | | | | | LEAR | 0657.0 | 0658.0 | III | | 1 | 25 | 106 | | | | | | IZMI | 0657.2 | 0658.2 | 111 | GG | 2 | 40 | 100 | | | | | | IZMI | 0705.3 | 0707.5 | III | GG | 2 | 45 | 145 | | | | | | IZMI | 0729.4 | 0730.0 | III | G | 2 | 45 | 95 | | | | | | IZMI | 0736.2 | 0736.9 | 111 | G | 1 | 45 | 70 | | | | | | LEAR | 0801.0 | 0803.0 | 111 | _ | 2 | 25 | 130 | | | | | | IZMI | 0801.8 | 0805.3 | 111 | GG,FS | 2 | 25x | 210 | | | | | | HIRA | 0802.0 | 0804.0 | III | G G | 2 | 30 | 130 | | | | | | SVTO | 0802.0 | 0804.0 | III | - | 2 | 25U | 84U | | | | | | LEAR | 0829.0 | 0830.0 | III | | 1 | 250 | 120 | | | | | | HIRA | 0830.0 | 0830.5 | III | D | 2 | 40 | 110 | | | | | | | | | | В | 2 | 40<br>45 | 105 | | | | | | IZMI | 0830.0 | 0831.0 | III | G | 2 | | | | | | | | SVTO | 0830.0 | 0830.0 | III | • | 1 | 25U | 82U | | | | | | IZMI | 0856.0 | 0856.7 | III | G | 2 | 45 | 90 | | | | | | SVTO | 0856.0 | 1145.0 | III | N | 2 | 25 | 148 | | | | | | IZMI | 0857.6 | 0858.7 | III | G | 2 | 45 | 90 | | | | | | HIRA | 0858.0 | 0858.5 | III | В | 1 | 40 | 180 | | | | | | HIRA | 0900.5 | 0901.0 | III | В | 1 | 30 | 120 | | | | | | IZMI | 0900.7 | 0900.7 | III | В | 2 | 45 | 100 | | | | | | IZMI | 0901.9 | 0902.7 | 111 | G | 2 | 45 | 51 | | | | | | | | | | | | 45 | 60 | | MAY | | | ATION | | | | VENT | | | FREQUI | | | |------|-------|--------|--------------|------------------|-------------------|-------------------|------------------|--------------|----------------|----------------|---------| | 1214 | Start | | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | -ay | (UT) | (01) | 31a | (01) | (01) | Class | Kelliai KS | (1 3) | (1112) | (11112) | | | 17 | | | IZMI | 0913.2 | 0913.4 | III | В | 1 | 45 | 95 | | | | | | IZMI | 0917.0 | 0918.2 | III | GG | 2 | 45 | 90 | | | | | | IZMI | 0920.1 | 0921.0 | III | G | 1 | 45 | 75 | | | | | | IZMI | 0943.3 | 0944.0 | 111 | G | 1 | 45 | 95 | | | | | | IZMI | 0945.3 | 0954.6 | 111 | GG | 2 | 25x | 105 | | | | | | IZMI | 1040.3 | 1040.8 | III | G | . 1 | 45 | 150 | | | | | | IZMI | 1055.0 | 1057.0 | 111 | GG | 2 | 40 | 100 | | | | | | IZMI | 1057.1 | 1100.9 | 111 | GG,FS | 2 | 25X | 160 | | | | | | HOLL | 1233.0 | 0150.0 | III | N | 2 | 25 | 92 | | | | | | SVTO | 1233.0 | 1737.0 | III | N | 2 | 25 | 162 | | | | | | SGMR | 1242.0 | 1243.0 | III | | 1 | 30 | 55 | | | | | | SGMR | 1317.0 | 1531.0 | III | N | 2 | 30 | 70 | | | | | | HOLL | 1440.0 | 1442.0 | III | | 1 | 25 | 87 | | | | | | SGMR | 1626.0 | 1635.0 | 111 | | 1 | 30 | 60 | | | | | | PALE | 1928.0 | 2159.0 | III | N | 3 | 25 | 150 | | | | | | SGMR | 2008.0 | 2009.0 | III | | 1 | 30 | 60 | | | | 1927 | 2400 | HIRA | 2008.0 | 2011.5 | III | G | 1 | 25X | 200 | | | | | | HIRA | 2046.5 | 2047.5 | 111 | В | 1 | 200 | 400 | | | | | | HIRA | 2119.0 | 2120.0 | III | В | 2 | 30 | 150 | | | | | | SGMR | 2119.0 | 2159.0 | 111 | N | 2 | 30 | 80 | | | | 2050 | 2400 | CULG | 2119.0 | 2121.0 | III | G | 2 | 25 | 140 | | | | | | CULG | 2131.0 | 2155.0 | 111 | N | 1 | 40 | 100 | | | | | | CULG | 2137.0 | 2142.0 | 1 1 1 | GG | 2 | 23 | 140 | | | | | | HIRA | 2137.0 | 2142.5 | 111 | G | 2 | 25X | 170 | | | | | | HIRA | 2158.5 | 2159.0 | 111 | В | 3 | 25X | 180 | | | | | | CULG | 2159.0 | 2159.0 | III | В | 3 | 23 | 140 | | | | | | CULG | 2315.0 | 2325.0 | III | GG | 2 | 35 | 150 | | | | | | LEAR | 2315.0 | 2339.0 | 111 | N | 1 | 25 | 180 | | | | | | PALE | 2315.0 | 2343.0 | III | N | 1 | 25 | 150 | | | | | | HIRA | 2318.0 | 2322.5 | 111 | G | 1 | 25X | 130 | | | | | | CULG | 2329.0 | 2334.0 | III | G | 2 | 35 | 180 | | | | | | HIRA | 2329.0 | 2332.0 | 111 | G | 2 | 25X | 290 | | | 10 | | | LEAD | 0017.0 | 0017.0 | *** | | 1 | 47 | 160 | | | 18 | 0000 | 0710 | LEAR<br>CULG | 0017.0<br>0017.0 | 0017.0 | III<br>III | n | 1 | 40 | 160 | | | | 0000 | | HIRA | 0017.0 | 0017.5 | III | B<br>B | i | 30 | 190 | | | | 0000 | 0940 | CULG | 0250.0 | 0252.0 | III | G | i | 28 | 90 | | | | | | LEAR | 0250.0 | 0251.0 | III | u | i | 25 | 110 | | | | | | PALE | 0250.0 | 0253.0 | III | | i | 25 | 86 | | | | | | HIRA | 0250.5 | 0251.0 | III | В | i | 25X | 90 | | | | 0426 | 1720 | | 0230.3 | 0231.0 | 111 | Б | • | 277 | 70 | | | | 0420 | 1729 | ONDR | 0446.0 | 0446.5 | III | В | 1 | 130 | 210 | | | | | | HIRA | | | | | 1 | 28 | 110 | | | | OFF 1 | 1200 | CULG | 0545.0 | 0545.0<br>1200.0D | III | В | | 180 | 270X | | | | 0551 | 1200 | IZMI | 0551.0E | | I | N | 1 | | | | | | | | IZMI | 0607.2 | 0607.4 | III | В | 1 | 45<br>45 | 70<br>05 | | | | | | IZMI | 0608.0U | 1200.00 | III | N | 1 | 45<br>40 | 95<br>100 | | | | | | IZMI | 0700.9 | 0701.2 | III | G | 2 | 40<br>70 | 100 | | | | | | CULG | 0701.0 | 0703.0 | III | G<br>C ES | 1 | 30<br>45 | 80 | | | | | | IZMI | 0703.1 | 0703.4 | III | G,FS | 1 | 45<br>45 | 90<br>90 | | | | | | IZMI | 0759.3 | 0759.4 | III | G | 1 | 45<br>/ 5 | 90<br>95 | | | | | | IZMI | 0847.6 | 0850.7 | III | GG<br>C FS | 2 | 45<br>45 | 85<br>00 | | | | | | IZMI | 0900.2 | 0900.3 | III | G,FS | 2 | 45<br>25 | 90<br>170 | | | | | | SVTO | 1126.0 | 1128.0 | III | CC | 1 | 25<br>25 v | 139<br>150 | | | | | | IZMI | 1126.7 | 1128.7 | III | GG,FS | 2 | 25X | 150 | | | | | | SGMR | 1127.0 | 1127.0 | III | В | 1 | 30<br>/5 | 60<br>100 | | | | | | IZMI | 1157.1 | 1157.2 | III | В | 2 | 45<br>70 | 100 | | | | | | SGMR | 1236.0 | 1237.0 | III | | 1 | 30<br>35 | 80 | | | | | | SVTO | 1236.0 | 1240.0 | III | | 1 | 25 | 170 | | | | | | HOLL | 1318.0 | 1324.0 | III | | 1 | 25 | 180 | | | | | | SVTO | 1318.0 | 1324.0 | III | | 1 | 25 | 153 | | | | | | SGMR | 1321.0 | 1322.0 | III | | 1 | 30 | 80 | | | | | | SVTO | 1342.0 | 1737.0 | III | N | 1 | 25 | 156 | | | | | | PALE | 1853.0 | 0119.0 | III | N | 1 | 25 | 85 | | | | | | HOLL | 1902.0 | 0107.0 | III | N | 1 | 25 | 180 | | | | | | SGMR | 1918.0 | 1919.0 | III | | 2 | 30 | 80 | | | | 1926 | | HIRA | 2016.5 | 2018.5 | III | G | 1 | 25X | 260 | | | | | 27. DO | CULG | 2050.0E | 2400.0D | III | N | 1 | 40U | 90 | | | | 2050 | 2400 | OOLG | | | | | - | | | | MAY | | | /ATION | | | | VENT | _ | | FREQUE | | | |------|------|---------------|--------------|------------------|------------------|-------------------|------------------|--------------|----------------|----------------|--------------| | ) av | | t End<br>(UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | Jay | (01) | (01) | | | | | | | (11112) | | | | 19 | | | LEAR | 0017.0 | 0018.0 | III | | 1 | 25 | 104 | | | | 0000 | 0941 | HIRA | 0017.5 | 0018.5 | III | В | 1 | 25X | 140 | | | | | | CULG | 0018.0 | 0018.0 | III | G | 1 | 25 | 130 | | | | | | HIRA | 0105.0 | 0105.5 | III | В | 1 | 25X | 70 | | | | | | LEAR | 0105.0 | 0105.0 | 111 | | 1 | 25 | 48 | | | | 0425 | 1730 | ONDR | | | | | | | | | | | | | LEAR | 0742.0 | 0743.0 | III | | 2 | 25 | 180 | | | | | | SVTO | 0742.0 | 0744.0 | III | | 2 | 25 | 180 | | | | | | HIRA | 0743.0 | 0743.5 | III | В | 3 | 25X | 270 | | | | | | LEAR | 0855.0 | 0859.0 | III | | 1 | 25 | 180 | | | | | | SVTO | 0855.0 | 0859.0 | III | | 1 | 25 | 180 | | | | | | HIRA | 0855.5 | 0857.0 | III | G | 2 | 50 | 180 | | | | | | SVTO | 0918.0 | 1017.0 | III | | 1 | 25 | 154 | | | | | | SVTO | 0918.0 | 1017.0 | III | N | 1 | 25 | 154 | | | | | | SVTO | 1114.0 | 1334.0 | III | N | 1 | 25 | 83 | | | | | | SGMR | 1118.0 | 1121.0 | III | | 1 | 30 | 65 | | | | | | HOLL | 1436.0 | 1437.0 | III | | 2 | 25 | 180 | | | | | | SGMR | 1436.0 | 1438.0 | III | | 3 | 30 | 80 | | | | | | SVTO | 1436.0 | 1437.0 | III | | 3 | 25 | 180 | | | | | | HOLL | 1441.0 | 1450.0 | ΙΙ | | 1 | 25 | 89 | ESS 0473 | | | | | SVTO | 1444.0 | 1453.0 | II | | 1 | 36 | 84 | ESS 0459 | | | 1926 | 2400 | HIRA | | | | | | | | | | | 2055 | | CULG | 2317.0 | 2322.0 | 111 | G | 1 | 40 | 80 | | | | | | | | | | | | | | | | 20 | | | LEAR | 0218.0 | 0218.0 | 111 | | 1 | 30 | 131 | | | | 0000 | 0705 | CULG | 0218.0 | 0222.0 | 111 | G | 1 | 45U | 140 | | | | 0000 | | HIRA | 0218.5 | 0219.0 | III | В | 1 | 25X | 120 | | | | | | LEAR | 0251.0 | 0251.0 | III | | 1 | 26 | 43 | | | | 0424 | 1731 | ONDR | 0601.3 | 0605.2 | DCIM | G | 2 | 800x | 2000X | | | | | | HIRA | 0601.5 | 0603.5 | III | В | 3 | 50 | 450 | | | | | | CULG | 0602.0 | 0604.0 | III | G | 3 | 25 | 300 | | | | | | LEAR | 0602.0 | 0604.0 | III | _ | 1 | 25 | 180 | | | | | | CULG | 0604.0 | 0606.0 | II | SH | 2 | 65 | 180 | | | | | | CULG | 0604.0 | 0607.0 | ΪΪ | FN | 3 | 28 | 120 | SWF ESS 2100 | | | | | HIRA | 0604.0 | 0616.5 | ΪΪ | • • • | 3 | 25X | 340 | OM: 200 2100 | | | | | LEAR | 0604.0 | 0618.0 | ΙΙ | | 1 | 25U | 180U | ESS 1200 | | | | | SVTO | 0604.0 | 0619.0 | II | | 3 | 25U | 180U | ESS 2424 | | | | | CULG | 0605.0 | 0612.0 | II | FN | 3 | 23 | 170 | ESS 700 | | | | | CULG | 0605.0 | 0624.0 | II | SH | 3 | 25 | 340 | 233 700 | | | | | CULG | 0613.0 | 0655.0 | CONT | 311 | 1 | 23 | 180 | | | | | | SVTO | 0619.0 | 0717.0 | III | N | i | 25 | 81 | | | | | | LEAR | 0620.0 | 0625.0 | III | N | i | 25 | 109 | | | | | | LEAR | | 0920.0 | III | | i | 25 | 180 | | | | | | | 0915.0 | 0920.0 | III | | 1 | 25 | 162 | | | | | | SVTO | 0915.0 | | | <b>D</b> | | | | | | | | | HIRA | 0920.0 | 0920.5 | III | В | 2 | 35<br>25 | 330<br>44 | Ecc 1000 | | | | | SVTO | 0928.0 | 0931.0 | II | | 1 | 25<br>70 | 44 | ESS 1088 | | | | | SGMR | 1137.0 | 1139.0 | III | | 1 | 30<br>25 | 80<br>170 | | | | | | SVTO | 1137.0 | 1139.0 | III | M | 2 | 25 | 170 | | | | | | HOLL | 1904.0 | 1917.0 | III | N | 1 | 25 | 84 | | | | | | PALE | 1904.0 | 1905.0 | III | | 1 | 25U | 73U | | | | | | SGMR | 1904.0 | 1905.0 | III | | 1 | 30 | 80 | | | | | | HOLL | 2003.0 | 2004.0 | III | | 1 | 25 | 84 | | | | | | PALE | 2003.0 | 2004.0 | III | | 1 | 25U | 70U | | | | | | SGMR | 2003.0 | 2004.0 | III | _ | 1 | 30 | 60 | | | | | 2400 | HIRA | 2003.5 | 2004.0 | III | В | 1 | 25X | 80 | | | | 2055 | 2400 | CULG | 2055.0E | 2400.0D | I | s | 1 | 110 | 170 | | | | | | HOLL | 2133.0 | 2134.0 | III | | 1 | 25 | 124 | | | | | | PALE | 2133.0 | 2133.0 | III | _ | 1 | 250 | 53U | | | | | | HIRA | 2133.5 | 2134.0 | III | В | 1 | 50 | 120 | | | | | | CULG | 2134.0 | 2134.0 | III | В | 1 | 50 | 110 | | | | | | SGMR | 2143.0 | 2143.0 | 111 | | 1 | 30 | 80 | | | | | | HOLL | 2231.0 | 2239.0 | 111 | | 1 | 25 | 84 | | | | | | CULG | 2235.0 | 2238.0 | 111 | G | 1 | 40U | 90 | | | | | | CULG | 2305.0 | 2345.0 | III | N | 1 | 40U | 140 | | | 21 | იიიი | 0701 | רווו ר | በበበበ በ፡፡ | 0250.0 | I | • | 1 | 110 | 170 | | | ۷ ا | 0000 | 0/01 | CULG | 0000.0E | | | S | | | | | | | | | CULG | 0152.0 | 0348.0 | III | N | 1 | 40<br>48v | 160 | | | | | 0943 | CULG<br>HIRA | 0313.0<br>0313.0 | 0322.0<br>0324.0 | III<br>III | GG<br>G | 3<br>3 | 18x<br>25x | 700<br>2000 | | | | 0000 | | | | 115.7/. 11 | | | | | | | MAY | ( | OBSERVATION | | | | | VENT | _ | | FREQUI | | | |-----|-------------|----------|--------------|---------------|-------------|-------------------|------------------|--------------|----------------|----------------|---------| | )av | Start | End (UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | | | | | (0.) | | | | | | •••••• | | | 21 | 0423 | 1732 | ONDR | 0/40 0 | 2047.0 | | | | 2511 | F / 11 | | | | | | SVTO | 0618.0 | 0917.0 | III | N | 1 | 25U | 56U | | | | | | CULG | 0648.0 | 0648.0 | III | В | 1 | 30 | 120 | | | | | | HOLL | 1430.0 | 0130.0 | III | N | 1 | 25 | 180 | | | | 4007 | 0100 | SVTO | 1439.0 | 1610.0 | III | N | 1 | 25U | 180U | | | | 1924 | 2400 | HIRA | 1941.0 | 1941.5 | III | В | 1 | 70 | 200 | | | | | | HIRA | 2014.0 | 2014.5 | III | В | 1 | 25X | 120 | | | | | | PALE | 2014.0 | 2014.0 | III | | 1 | 25 | 63 | | | | | | PALE | 2057.0 | 2058.0 | III | | 1 | 25 | 60 | | | | | | HIRA | 2057.5 | 2058.0 | III | В | 1 | 30 | 180 | | | | | | HIRA | 2218.0 | 2218.5 | III | В | 1 | 40 | 90 | | | | 2055 | 2400 | CULG | 2218.0 | 2218.0 | III | В | 1 | 40 | 90 | | | | | | CULG | 2224.0 | 2232.0 | ΙΙ | SH | 1 | 50 | 150 | ESS 550 | | | | | HIRA | 2224.0 | 2231.5 | ΙΙ | | 1 | 50 | 120 | | | 22 | 0000 | 0943 | HIRA | 0228.5 | 0229.0 | 111 | В | 1 | 25X | 210 | | | | 0000 | | CULG | 0229.0 | 0229.0 | 111 | В | 1 | 25 | 90 | | | | 20 | | LEAR | 0257.0 | 0257.0 | III | | 1 | 64 | 180 | | | | | | HIRA | 0257.5 | 0258.0 | 111 | В | 3 | 60 | 420 | | | | | | CULG | 0258.0 | 0303.0 | 111 | Ğ | 1 | 30 | 280 | | | | | | LEAR | 0416.0 | 0418.0 | 111 | | 2 | 25 | 135 | | | | | | PALE | 0416.0 | 0417.0 | 111 | | 1 | 25 | 60 | | | | | | HIRA | 0416.5 | 0417.0 | III | В | i | 25x | 150 | | | | | | SVTO | 0417.0 | 0417.0 | III | - | i | 25 | 48 | | | | 0422 | 1733 | ONDR | 041710 | 0417.0 | ••• | | • | | | | | | U466 | 1133 | CULG | 0522.0 | 0522.0 | 111 | В | 1 | 30 | 90 | | | | | | CULG | 0530.0 | 0530.0 | III | G | i | 30 | 90 | | | | | | CULG | 0554.0 | 0554.0 | III | В | 1 | 30 | 90 | | | | | | | 0626.0 | 0627.0 | III | G | 1 | 30 | 130 | | | | | | CULG<br>HIRA | 0626.5 | 0627.0 | III | В | 1 | 50<br>50 | 190 | | | | | | | 0633.5 | | | | 1 | 50 | 200 | | | | | | HIRA | | 0635.0 | III | G<br>G | 1 | 30 | 160 | | | | | | CULG | 0634.0 | 0635.0 | III | G | 1 | | | | | | | | HIRA | 0709.0 | 0709.5 | III | В | | 30<br>25 | 100 | | | | | | LEAR | 0709.0 | 0709.0 | III | | 1 | 25 | 130 | | | | | | SVTO | 0709.0 | 0709.0 | III | | 1 | 280 | 82U | | | | | | SVTO | 0736.0 | 1100.0 | III | N | 1 | 25U | 81U | | | | | | HIRA | 0805.0 | 0806.0 | III | G | 1 | 25X | 180 | | | | | | LEAR | 0805.0 | 0806.0 | III | | 1 | 25 | 97 | | | | | | HIRA | 0854.0 | 0854.5 | III | В | 2 | 40 | 200 | | | | | | LEAR | 0854.0 | 0854.0 | III | | 1 | 25 | 141 | | | | | | SVTO | 1339.0 | 1741.0 | III | N | 1 | 25 | 160 | | | | | | HOLL | 1403.0 | 1407.0 | III | | 1 | 25 | 155 | | | | | | SGMR | 1403.0 | 1511.0 | III | N | 1 | 30 | 70 | | | | | | HOLL | 1425.0 | 1431.0 | III | | 1 | 25 | 59 | | | | | | HOLL | 1425.0 | 1728.0 | 111 | N | 1 | 25 | 92 | | | | | | HOLL | 1747.0 | 1747.0 | III | | i | 25 | 99 | | | | | | PALE | 1747.0 | 1831.0 | 111 | N | 2 | 25 | 180 | | | | | | HOLL | 1754.0 | 1800.0 | III | | 2 | 25 | 176 | | | | | | SGMR | 1754.0 | 1759.0 | III | | 2 | 30 | 80 | | | | | | HOLL | 1817.0 | 0130.0 | III | N | 1 | 25 | 70 | | | | | | PALE | 1906.0 | 0331.0 | III | N | 1 | 25 | 65 | | | | | | | | | | М | 1 | 30 | 60 | | | | 4007 | 2/00 | SGMR | 2035.0 | 2036.0 | III | n | - | | | | | | 1924 | 2400 | HIRA | 2035.5 | 2036.0 | III | В | 1 | 25X | 220 | | | | 2400 | 2/02 | HIRA | 2114.0 | 2114.5 | III | В | 1 | 25X | 170 | | | | 2100 | 2400 | CULG | 2114.0 | 2114.0 | III | В | 1 | 50U | 150 | | | | | | CULG | 2123.0 | 2124.0 | III | G | 1 | 50U | 90 | | | | | | CULG | 2221.0 | 2222.0 | III | G | 1 | 50U | 270 | | | | | | HIRA | 2221.0 | 2222.0 | III | G | 2 | 100 | 230 | | | | | | HOLL | 2239.0 | 2249.0 | III | | 1 | 25 | 142 | | | | | | CULG | 2241.0 | 2252.0 | III<br>III | GG<br>G | 2<br>2 | 25<br>25x | 200<br>300 | | | | | | HIRA | 2241.0 | 2248.0 | 111 | u | ۷. | 258 | 300 | | | 23 | | 0944 | HIRA | 0045 5 | 0061 6 | | • | 4 | 75 | | | | | 0000 | 0700 | CULG | 0012.0 | 0014.0 | III | G | 1 | 35 | 80 | | | | | | CULG | 0300.0 | 0334.0 | III | N | 1 | 40 | 150 | | | | 0421 | 1734 | ONDR | | | | | | _ | | | | | | | CULG | 0506.0 | 0700.0D | III | N | 1 | 23 | 90 | | | | | | SVTO | 0645.0 | 1741.0 | 111 | N | 1 | 25U | 158U | | | | | | LEAR | 0848.0 | 0849.0 | | | 1 | 30 | 148 | | ## SOLAR RADIO EMISSION Spectral Observations MAY | ( | OBSERV | | | | | VENT | | | FREQUE | | | |----|---------------|---------------|--------------|-------------------|--------------------|-------------------|------------------|--------------|----------------|----------------|----------| | ay | Start<br>(UT) | End<br>(UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | 3 | | | SGMR | 1159.0 | 2342.0 | III | N | 1 | 30 | 80 | | | | | | HOLL | 1227.0 | 0130.0 | III | N | i | 25 | 83 | | | | | | PALE | 1609.0 | 0445.0 | III | N | 1 | 25 | 150 | | | | 1923 | 2400 | HIRA | | | | | | | | | | | | | CULG | 2100.0E | 2400.0D | III | S | 1 | 30 | 160 | | | | 2100 | 2400 | CULG | 2100.0E | 2400.0D | I | S | 1 | 120 | 170 | | | | | | LEAR | 2310.0 | 0.000 | III | N | 1 | 25 | 100 | | | | | | | | | | | | | | | | 24 | 0000 | 0945 | HIRA | 0000 05 | 0700 00 | | • | 4 | 70 | 00 | | | | 0000 | 0700 | CULG | 0000.0E | 0700.0D<br>0700.0D | III<br>I | S<br>S | 1<br>1 | 30<br>100 | 90<br>170 | | | | 0000 | 0700 | CULG<br>SVTO | 0000.0E<br>0347.0 | 1743.0 | CONT | 3 | 1 | 25 | 180 | | | | 0421 | 1735 | ONDR | 0347.0 | 1745.0 | CONT | | • | 2,5 | 100 | | | | 0421 | 1133 | SGMR | 1226.0 | 2014.0 | CONT | | 1 | 30 | 60 | | | | | | HOLL | 1255.0 | 0156.0 | III | N | 1 | 25 | 180 | | | | | | PALE | 1700.0 | 0449.0 | III | N | 2 | 25 | 180 | | | | | | SVTO | 1712.0 | 1721.0 | ΙΙ | | 1 | 123 | 160 | ESS 0267 | | | | | HOLL | 1713.0 | 1717.0 | ΙΙ | | 1 | 123 | 161 | ESS 0266 | | | | | HIRA | 1940.0 | 2007.0 | ·II | | 2 | 25x | 200 | | | | | | HOLL | 1940.0 | 2010.0 | ΙΙ | | 2 | 25 | 180 | ESS 0566 | | | | | PALE | 1940.0 | 2004.0 | ΙΙ | | 3 | 25 | 180 | ESS 0620 | | | 1922 | 2400 | HIRA | 1940.0 | 1952.0 | ΙΙ | | 2 | 25X | 90 | | | | | | SGMR | 1941.0 | 2008.0 | ΙΙ | | 1 | 30 | 80 | ESS 0600 | | | | | CULG | 2100.0E | 2400.0D | III | S | 1 | 25 | 180 | | | | 2100 | 2400 | CULG | 2100.0E | 2215.0 | I | S | 1 | 100 | 170 | | | | | | CULG | 2215.0 | 2215.0D | I | S | 2 | 55 | 170 | | | | | | HOLL | 2239.0 | 0156.0 | CONT | | 1 | 25 | 180 | | | | | | PALE | 2241.0 | 0449.0 | CONT | | 2 | 25<br>25 | 180 | | | | | | LEAR | 2309.0 | 0.000 | CONT | | 2 | 25 | 180 | | | 25 | | | CULG | 0000.0E | 0450.0 | III | S | 1 | 20 | 180 | | | | 0000 | 0700 | CULG | 0000.0E | 0240.0 | Ī | s | i | 40 | 160 | | | | | | CULG | 0310.0 | 0310.0D | Ī | s,c | 2 | 50 | 160 | | | | 0420 | 1736 | ONDR | | | | -,- | | | | | | | | | CULG | 0450.0 | 0700.0D | III | S,C | 3 | 20 | 180 | | | | | | LEAR | 0457.0 | 0459.0 | III | - | 3 | 25 | 136 | | | | 0000 | 0946 | HIRA | 0457.0 | 0458.0 | III | G | 2 | 25X | 110 | | | | | | HIRA | 0655.0 | 0656.5 | III | В | 2 | 25X | 500 | | | | | | LEAR | 0655.0 | 0656.0 | V | | 3 | 25 | 180 | | | | | | SVTO | 0655.0 | 0656.0 | III | | 3 | 25 | 172 | | | | | | SVTO | 0655.0 | 0656.0 | V | _ | 3 | 25 | 172 | | | | | | HIRA | 0814.0 | 0814.5 | III | В | 2 | 30 | 210 | | | | | | HOLL | 1313.0 | 0120.0 | III | N | 1 | 25<br>70 | 75 | | | | | | SGMR | 1314.0<br>1616.0 | 1314.0 | III | | 1<br>1 | 30<br>30 | 60<br>55 | | | | | | SGMR<br>SVTO | 1616.0 | 1617.0<br>1617.0 | III<br>III | | 1 | 25 | 80 | | | | | | HOLL | 1622.0 | 0157.0 | CONT | | 1 | 44U | 86U | | | | | | PALE | 1848.0 | 1857.0 | III | | i | 25 | 50 | | | | | | PALE | 2059.0 | 2059.0 | III | | i | 25 | 47 | | | | 1922 | 2400 | HIRA | 2059.0 | 2059.5 | III | В | i | 25x | 140 | | | | | | CULG | 2100.0E | 2400.0D | III | S | 1 | 50U | 180 | | | | 2100 | 2400 | CULG | 2100.0E | 2400.0D | I | s,c | 1 | 60 | 160 | | | | | | HIRA | 2113.0 | 2113.5 | 111 | В | 1 | 25X | 110 | | | | | | PALE | 2113.0 | 2113.0 | 111 | | 1 | <b>25U</b> | 86U | | | | | | PALE | 2205.0 | 2206.0 | 111 | | 1 | 25 | 60 | | | | | | HIRA | 2205.5 | 2206.0 | III | В | 1 | 25X | 180 | | | | | | PALE | 2217.0 | 2244.0 | III | N | 1 | 25 | 80 | | | | | | LEAR | 2310.0 | 0930.0 | CONT | | 1 | 44 | 180 | | | 24 | 0000 | 00/7 | UIDA | | | | | | | | | | 26 | 0000 | U <b>9</b> 47 | HIRA<br>CULG | 0000.0E | 0700.0D | III | 9 | 1 | 50U | 180 | | | | 0000 | 0700 | CULG | 0000.0E | 0700.0D | I | s<br>s,c | 1 | 60 | 160 | | | | 0000 | 3700 | SVTO | 0517.0 | 0517.0 | III | 3,0 | 1 | 36 | 127 | | | | | | SVTO | 0953.0 | 1226.0 | CONT | | 1 | 28U | 155U | | | | | 1 | SVTO | 1054.0 | 1227.0 | III | N | i | 28U | 146U | | | | | | SGMR | 1057.0 | 1057.0 | III | •• | 1 | 30 | 70 | | | | | | SVTO | 1109.0 | 1111.0 | 11 | | i | 75 | 147 | ESS 0428 | | | | | SGMR | 1141.0 | 1211.0 | 111 | N | i | 30 | 70 | | | | | | | | | | | - | | | | # S O L A R R A D I O E M I S S I O N Spectral Observations MAY | ( | | ATION | | | | VENT | | | FREQUI | | | |----------|-------|-------|--------------|---------|-------------|-------------------|------------------|--------------|----------------|----------------|---------| | <b>.</b> | Start | | C+c | Start | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | Jay | (01) | (UT) | Sta | (UT) | (01) | Llass | Remarks | (1-3) | (MnZ) | (MUS) | | | 26 | 0419 | 1737 | ONDR | 1207.0 | 1208.5 | DCIM | G | 1 | 2000X | 4500x | | | | | | HOLL | 1418.0 | 2129.0 | III | N | 1 | 25 | 131 | | | | | | SGMR | 1418.0 | 1419.0 | III | | 1 | 30 | 50 | | | | | | SVTO | 1418.0 | 1419.0 | III | | 1 | 25 | 57 | | | | | | SVTO | 1434.0 | 1744.0 | CONT | | 2 | 25U | 180U | | | | | | SGMR | 1450.0 | 1450.0 | III | | 1 | 30 | 55 | | | | | | SVTO | 1450.0 | 1451.0 | III | | 1 | 25U | 180U | | | | | | HOLL | 1502.0 | 0153.0 | CONT | | 1 | 44 | 147 | | | | | | SGMR | 1515.0 | 2300.0 | CONT | | 1 | 30 | 80 | | | | | | PALE | 1629.0 | 0450.0 | CONT | | 1 | 85U | 180U | | | | 1921 | 2400 | HIRA | | | | | | | | | | | 17=1 | | CULG | 2100.0E | 2400.0D | 111 | N | 1 | 40U | 180 | | | | 2100 | 2400 | CULG | 2100.0E | 2400.0D | I | S | 1 | 100 | 170 | | | | _,,,, | _,,,, | LEAR | 2310.0 | 0930.0 | CONT | • | 1 | 64 | 180 | | | | | | | 20.010 | | | | | | | | | 27 | | | CULG | 0000.0E | 0700.0D | 111 | N | 1 | 23 | 180 | | | ' | 0000 | 0700 | CULG | 0000.0E | 0700.0D | I | S | i | 60 | 170 | | | | 0000 | | HIRA | 0014.5 | 0015.0 | iII | В | i | 50 | 240 | | | | 5500 | 0741 | SVTO | 0345.0 | 1338.0 | CONT | - | 1 | 52 | 180 | | | | 0418 | 177Ω | | 0.42.0 | 1330.0 | COMI | | • | 26 | .00 | | | | 0410 | 1130 | ONDR | 0/50 0 | 0459.5 | III | В | 1 | 40 | 110 | | | | | | HIRA | 0459.0 | | | U | 1 | 40<br>25 | 115 | | | | | | LEAR | 0459.0 | 0459.0 | III | | 1 | 25<br>25 | 120 | | | | | | SVTO | 0459.0 | 0459.0 | III | D | 1 | 40 | 80 | | | | | | HIRA | 0625.0 | 0625.5 | III | В | | | | | | | | | SVTO | 0625.0 | 0625.0 | III | | 1 | 25U | 82U | | | | | | SVTO | 1035.0 | 1035.0 | III | | 1 | 25 | 124 | | | | | | SVTO | 1054.0 | 1055.0 | III | | 1 | 25 | 120 | | | | | | HOLL | 1249.0 | 1249.0 | III | | 1 | 25 | 142 | | | | | | SGMR | 1249.0 | 1250.0 | III | | 1 | 30 | 80 | | | | | | SVTO | 1253.0 | 1257.0 | III | | 2 | 25 | 150 | | | | | | HOLL | 1440.0 | 1441.0 | III | | 1 | 25 | 106 | | | | | | SVTO | 1440.0 | 1441.0 | III | | 1 | <b>25U</b> | 82U | | | | 1921 | 2400 | HIRA | | | | | | | | | | | 2100 | 2400 | CULG | | | | | | | | | | | | | | | | | | | | | | | 28 | 0000 | 0948 | HIRA | | | | | | | | | | | 0418 | 1739 | ONDR | | | | | | | | | | | | | LEAR | 0549.0 | 0553.0 | III | | 1 | 25 | 150 | | | | | | SVTO | 0549.0 | 0553.0 | III | | 1 | 25 | 147 | | | | 0000 | 0700 | CULG | 0550.0 | 0550.0 | III | В | 1 | 20 | 150 | | | | | | CULG | 0553.0 | 0553.0 | III | В | 1 | 23 | 60 | | | | 0559 | 0655 | IZMI | | | | - | • | | | | | | 0704 | | IZMI | 0829.1 | 0929.3 | 111 | G | 1 | 45 | 65 | | | | 5,54 | .200 | IZMI | 0949.0U | 1200.0D | I | N | ż | 195 | 270X | | | | | | SVTO | 1108.0 | 1109.0 | 111 | •• | 1 | 25 | 48 | | | | | | SVTO | 1324.0 | 1328.0 | III | | 1 | 112U | 156U | | | | | | SVTO | 1503.0 | 1506.0 | III | | i | 250 | 82U | | | | | | HOLL | 1505.0 | 1506.0 | III | | i | 25 | 83 | | | | | | | | | III | | 1 | 25 | 80 | | | | | | HOLL | 1538.0 | 1538.0 | | | 1 | 25<br>25 | 68 | | | | 1000 | 2/00 | SVTO | 1538.0 | 1538.0 | III | | ı | 23 | 00 | | | | | 2400 | HIRA | | | | | | | | | | | 2100 | 2400 | CULG | | | | | | | | | | | 0000 | 00:- | <b></b> - | 0000 - | 0000 | | <b>n</b> | 4 | 7^ | 100 | | | 29 | | 0043 | CULG | 0029.0 | 0029.0 | III | В | 1 | 30 | 180 | | | | | 1740 | ONDR | | <b></b> = | | _ | _ | 4 | 700 | | | | 0000 | 0949 | HIRA | 0441.0 | 0441.5 | III | В | 1 | 170 | 300 | | | | | | LEAR | 0450.0 | 0450.0 | 111 | | 1 | 46 | 109 | | | | | | SVTO | 0450.0 | 0450.0 | III | | 1 | 41 | 82 | | | | | | LEAR | 0602.0 | 0604.0 | III | | 1 | 34 | 145 | | | | | | SVTO | 0602.0 | 0604.0 | 111 | | 1 | 32 | 148 | | | | | | HIRA | 0602.5 | 0603.0 | III | В | 1 | 40 | 310 | | | | 0600 | 1200 | IZMI | 0602.5 | 0602.8 | III | G,C | 2 | 45 | 260 | | | | 2300 | | IZMI | 0604.3 | 0605.3 | III | G G | 1 | 45 | 100 | | | | | | IZMI | 0604.3 | 1150.00 | Ī | N | i | 7, | 270x | | | | | | | | 0725.8 | | | | 45 | 100 | | | | | | IZMI | 0724.3 | | III | G | 2<br>1 | 50 | 130 | | | | | | HIRA | 0725.0 | 0725.5 | III | В | | | | | | | | | SVTO | 0725.0 | 0725.0 | III | 00.0 | 1 | 25<br>25 v | 81<br>100 | | | | | | . /MT | 0828.0 | 0832.0 | 111 | GG,C | 2 | 25X | 190 | | | | | | IZMI<br>LEAR | 0830.0 | 0831.0 | III | 44,0 | 2 | 25 | 170 | | # S O L A R R A D I O E M I S S I O N Spectral Observations MAY | C | BSERV | | | | | VENT | _ | _ | FREQUI | | | |------|-------|--------------------|------|---------------|-------------|-------------------|------------------|--------------|----------------|----------------|---------| | 1011 | Start | | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | ay | (UT) | (01) | Sta | (01) | (01) | | Kelliai KS | (1-3) | (MIZ) | (MILZ) | | | 29 | | | SVTO | 0830.0 | 0831.0 | 111 | | 2 | 25 | 168 | | | | | | HIRA | 0830.5 | 0831.0 | 111 | В | 3 | 25X | 230 | | | | | | IZMI | 0835.0 | 1143.0 | III | N | 1 | 45 | 95 | | | | | | IZMI | 0846.1 | 0846.7 | UNCLF | | 2 | 50 | 70 | | | | | | IZMI | 0853.8 | 0859.3 | III | GG | 2 | 40 | 95 | | | | | | IZMI | 0902.2 | 0904.5 | I | GG | 2 | 45 | 70 | | | | | | SVTO | 0944.0 | 0954.0 | III | | 1 | 25 | 79 | | | | | | IZMI | 0944.4 | 0947.2 | 111 | GG | 2 | 25 | 100 | | | | | | IZMI | 0954.1 | 0954.6 | 111 | GG,C | 2 | 45 | 95 | | | | | | IZMI | 1044.8 | 1046.3 | 111 | G | 2 | 40 | 95 | | | | | | SVTO | 1104.0 | 1226.0 | 111 | N | 1 | 25 | 82 | | | | | | IZMI | 1104.3 | 1105.0 | 111 | G | 2 | 30 | 95 | | | | | | IZMI | 1110.2 | 1110.8 | III | G,C | 2 | 30 | 95 | | | | | | IZMI | 1120.8 | 1121.0 | III | G,FS | 2 | 30 | 95 | | | | | | SVTO | 1306.0 | 1355.0 | III | N | 1 | 25 | 82 | | | | | | HOLL | 1320.0 | 1321.0 | III | | i | 25 | 65 | | | | | | HOLL | 1331.0 | 1332.0 | III | | i | 25 | 63 | | | | | | SGMR | 1331.0 | 1332.0 | III | | i | 30 | 80 | | | | | | HOLL | 1541.0 | 1542.0 | III | | i | 34 | 137 | | | | | | SVTO | 1541.0 | 1541.0 | III | | 1 | 64U | 157<br>159U | | | | | | | 1547.0 | 2012.0 | III | N | 1 | 25 | 75 | | | | | | HOLL | 1731.0 | 1732.0 | III | 14 | 1 | 25<br>25 | 180 | | | | | | PALE | | | | | 2 | 25<br>73 | 180 | | | | | | SVTO | 1732.0 | 1732.0 | III | | 1 | 73<br>25 | 74 | | | | 4000 | 0400 | PALE | 2006.0 | 2007.0 | III | | | | | | | | 1920 | 2400 | HIRA | 2049.0 | 2049.5 | III | В | 1 | 80 | 200 | | | | | | HIRA | 2147.0 | 2148.0 | III | В | 2 | 25X | 280 | | | | | | HOLL | 2147.0 | 2150.0 | III | | 1 | 25 | 175 | | | | | | PALE | 2147.0 | 2149.0 | III | | 2 | 25 | 180 | | | | | | HIRA | 2149.0 | 2150.0 | III | В | 3 | 25X | 400 | | | | | | SGMR | 2149.0 | 2149.0 | III | | 2 | 30 | 80 | | | | | | HOLL | 2300.0 | 2300.0 | III | | 1 | 25 | 70 | | | | | | PALE | 2300.0 | 2300.0 | III | | 1 | <b>25</b> U | 52U | | | | | | HOLL | 2314.0 | 2314.0 | III | | 1 | 25 | 55 | | | | | | LEAR | 2314.0 | 2316.0 | III | | 1 | 25 | 112 | | | | | | HOLL | 2358.0 | 0018.0 | III | | 1 | 25 | 135 | | | | | | HOLL | 2358.0 | 0018.0 | III | N | 2 | 25 | 135 | | | | | | LEAR | 2358.0 | 0022.0 | III | N | 2 | 25 | 180 | | | | | | PALE | 2358.0 | 0020.0 | III | N | 2 | 25 | 180 | | | | | | HIRA | 2358.5 | 2359.0 | III | В | 2 | 30 | 130 | | | | | | | | 0007.0 | ••• | | 2 | 254 | 100 | | | 30 | 0000 | 0949 | HIRA | 0000.0 | 0023.0 | IV | | 2 | 25X | 190 | | | | | | HOLL | 0005.0 | 0023.0 | CONT | | 1 | 69 | 169 | | | | 0230 | | CULG | | | | | | | | | | | 0416 | 1741 | ONDR | | | | | | | | | | | | | SVTO | 0801.0 | 0802.0 | III | | 1 | 25 | 76 | | | | 0600 | 1200 | IZMI | 0801.8 | 0802.1 | III | В | 2 | 25 | 95 | | | | | | IZMI | 0810.0U | 0825.0U | I | N | 1 | 220 | 270X | | | | | | IZMI | 0955.8 | 0956.9 | I | GG | 2 | 230 | 260 | | | | | | SVTO | 0956.0 | 0956.0 | III | | 1 | 25 | 80 | | | | | | IZMI | 0956.1 | 0956.4 | 111 | G | 2 | 25X | 95 | | | | | | IZMÍ | 1018.0 | 1106.0 | I | N | 2 | 200 | 270X | | | | 1920 | 2400 | HIRA | | | | | | | | | | | 2300 | | CULG | | | | | | | | | | | | | =- | | | 4 | | | | | | | 1 | 0000 | 0700 | CULG | 0042.0 | 0042.0 | III | В | 1 | 23 | 80 | | | | | | CULG | 0141.0 | 0143.0 | III | G | 1 | 35 | 180 | | | | 0000 | 0950 | HIRA | 0141.5 | 0142.0 | III | В | 1 | 25X | 200 | | | | 0416 | | ONDR | | | - | | | | | | | | | · · · <del>-</del> | CULG | 0529.0 | 0553.0 | 111 | N | 1 | 30 | 90 | | | | | | CULG | 0533.0 | 0540.0 | III | GG | i | 23 | 180 | | | | | | HIRA | 0534.0 | 0537.0 | III | G | 1 | 50 | 200 | | | | | | | | | III | J | i | 25 | 180 | | | | 0/00 | 1200 | SVTO | 0534.0 | 0540.0 | | вс | | | | | | | 0600 | 1200 | IZMI | 0637.6 | 0637.8 | III | B,C | 2 | 45<br>75 | 70<br>00 | | | | | | CULG | 0638.0 | 0638.0 | III | В | 1 | 35 | 80 | | | | | | IZMI | 0901.9 | 0902.2 | III | В | 1 | 30 | 105 | | | | | | IZMI | 1112.0 | 1129.00 | I | N | 2 | 60 | 95 | | | | | | HOLL | 1833.0 | 1834.0 | 111 | | 1. | 25 | 59 | | | | | | PALE | 1833.0 | 1834.0 | III | | 1 | 25 | 50 | | | | | | | | | | | | | | | # SOLAR RADIO EMISSION Spectral Observations MAY 2001 | ( | DBSERV | ATION | | | E | VENT | | | ENCY | | | |-----|---------------|-------------|------|---------------|-------------|-------------------|------------------|--------------|----------------|----------------|---------| | Day | Start<br>(UT) | End<br>(UT) | Sta | Start<br>(UT) | End<br>(UT) | Spectral<br>Class | Event<br>Remarks | Int<br>(1-3) | Lower<br>(MHz) | Upper<br>(MHz) | Remarks | | 31 | | | HOLL | 1909.0 | 1910.0 | III | | 1 | 25 | 151 | | | | | | PALE | 1909.0 | 1910.0 | III | | 1 | 25 | 55 | | | | | | SGMR | 1909.0 | 1910.0 | 111 | | 1 | 30 | 80 | | | | | | PALE | 2057.0 | 2100.0 | III | | 1 | 25 | 54 | | | | 2100 | 2400 | CULG | 2100.0E | 2216.0 | I | S | 1 | 100 | 160 | | | | | | HOLL | 2233.0 | 2234.0 | III | | 1 | 25 | 50 | | | | 1919 | 2400 | HIRA | 2252.5 | 2253.0 | III | В | 1 | 80 | 200 | | | | | | CULG | 2253.0 | 2253.0 | III | В | 1 | 70 | 200 | | #### Event Remarks: B = Single burst C = Underlyling continuum (particularly with Type I) DC = Drifting chains DP = Drifting pairs F = Fundamental emission (Type II) FS = Fine structures (Type IV) G = Small group of bursts (<10) GG = Large group of bursts (>10) H = Herringbone HARM = Harmonic N = Intermittent activity in this period MOV = Moving (Type IV) MWB = Meter wave burst RS = Reverse slope burst S = Storm in the sense of intermittent but apparently connected actively SH = Secondary harmonic emission STA = Stationary (Type IV) U = U-shaped burst of Type III UE = Uncertain emission (Type II) W = Weak #### Frequency qualifiers: X = Extends beyond instrument range U = Uncertain frequency #### Remarks: SWF = Associated short wave fade observed ESS = Estimated shock speed in km/s (Type II) FLA = Associated flare observed (class optional) #### Stations Reporting: IZMI = Izmiran CULG = Culgoora PALE = Palehua LEAR = Learmonth ONDR = Ondrejov SVTO = San Vito BLEN = Bleien SGMR = Sagamore Hill POTS = Potsdam # **SOLAR RADIO NOISE STORM AT 164 MHZ** ## FROM NANCAY RADIOHELIOGRAPH MAY 2001 | | HELIOGRAPH<br>MEAN | ICS POSITIONS<br>VALUES <sup>1</sup> | IMP <sup>2</sup> | OBSERVINO | G TIME³ | |----------|--------------------|--------------------------------------|------------------|------------|---------| | DAY | E-W | S-N | | START( UT) | END(UT) | | 01/05/01 | -0.73 | +0.78 | I | 8H18 E | 15H18 D | | 01/05/01 | -0.76 | +0.36 | I | 8H18 E | 15H18 D | | 01/05/01 | +1.24 | +0.54 | I | 8H18 E | 15H18 D | | 03/05/01 | +0.25 | +0.14 | I | 10H29 E | 12H36 D | | 03/05/01 | +0.37 | +0.16 | I | 10H29 E | 12H36 D | | 05/05/01 | -0.40 | +0.57 | III | 8H17 E | 15h17 D | | 05/05/01 | +0.81 | +0.20 | III | 8H17 E | 15h17 D | | 06/05/01 | +0.28 | +0.68 | I | 8H33 E | 15H17 D | | 06/05/01 | +0.57 | +0.59 | I | 8H33 E | 15H17 D | | 06/05/01 | +0.99 | +0.22 | I | 8H33 E | 15H17 D | | 07/05/01 | +0.54 | +0.57 | I | 8H17 E | 15H15 D | | 08/05/01 | +0.85 | +0.54 | I | 10H06 E | 14H20 | | 10/05/01 | +0.02 | +0.48 | I | 8H17 E | 15H17 D | | 10/05/01 | +0.74 | +0.54 | I | 8H17 E | 11H00 | | 11/05/01 | -0.25 | -0.36 | II | 12H30 | 15H18 D | | 11/05/01 | +0.12 | -0.43 | I | 8H17 E | 15H18 D | | 12/05/01 | -0.17 | -0.42 | III | 8H17 E | 15H17 D | | 12/05/01 | +0.12 | +0.22 | III | 11H14 | 15H17 D | | 12/05/01 | +0.53 | -0.54 | III | 8H17 E | 15H17 D | | 13/05/01 | -0.84 | +0.51 | I | 8H17 E | 15H17 D | | 13/05/01 | +0.26 | -0.48 | II | 8H17 E | 15H17 D | | 13/05/01 | +0.73 | -0.48 | III | 8H17 E | 15H17 D | | 14/05/01 | -0.62 | +0.64 | I | 8H17 E | 15H01 D | | 15/05/01 | +0.39 | -0.47 | I | 8H36 E | 15H18 D | | 15/05/01 | +0.68 | -0.57 | I | 8H36 E | 15H18 D | | 16/05/01 | +0.82 | -0.62 | I | 12H00 | 15H18 D | | 16/05/01 | +1.02 | -0.25 | I | 8H18 E | 15H18 D | | 17/05/01 | +0.02 | +0.47 | I | 11H40 | 15H17 D | | 17/05/01 | +1.24 | -0.40 | I | 8H17 E | 15H17 D | | 18/05/01 | +1.10 | -0.59 | I | 8H17 E | 12H00 D | | 21/05/01 | -0.95 | +0.23 | I | 8H27 E | 15H18 D | <sup>&</sup>lt;sup>1</sup> POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT <sup>&</sup>lt;sup>2</sup> IMP1: FLUX< 5 SFU IMP2: 5< FLUX < 20 SFU IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU IMP5> 300 SFU <sup>&</sup>lt;sup>3</sup>E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANCAY OBSERVATIONS D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS | 21/05/01 | -0.60 | +0.09 | I | 8H27 E | 15H18 D | |----------|-------|-------|-----|--------|---------| | 21/05/01 | +0.14 | +0.14 | I | 8H27 E | 15H18 D | | 22/05/01 | -0.73 | +0.09 | I | 8H59 E | 15H18 D | | 22/05/01 | -0.26 | +0.19 | I | 8H59 E | 15H18 D | | 23/05/01 | +0.34 | +0.14 | II | 9H20 E | 15H18 D | | 24/05/01 | +0.42 | +0.23 | II | 8H18 E | 15H18 D | | 24/05/01 | +0.54 | +0.34 | II | 8H18 E | 15H18 D | | 25/05/01 | +0.59 | +0.17 | IV | 8H18 E | 14H34 D | | 26/05/01 | +0.85 | +0.37 | IV | 8H18 E | 15H18 D | | 27/05/01 | +1.07 | -0.03 | III | 8H18 E | 15H18 D | | 28/05/01 | +1.24 | +0.43 | II | 8H30 E | 15H18 D | | 29/05/01 | +1.36 | +0.56 | I | 8H18 E | 15H18 D | | 29/05/01 | +1.50 | +0.33 | I | 8H18 E | 15H18 D | | 30/05/01 | -0.71 | -1.15 | I | 8H43 E | 15H18 D | | 30/05/01 | +1.43 | +0.59 | I | 10H10 | 12H00 | | 31/05/01 | +1.57 | +0.67 | I | 8H20 E | 10H00 | | 31/05/01 | +1.47 | -0.14 | II | 10H00 | 15H19 D | # **NOISE STORM AT 327 MHZ** # FROM NANCAY RADIOHELIOGRAPH MAY 2001 | | HELIOGRAPHIO<br>MEAN VA | | IMP <sup>2</sup> | OBSERVIN | G TIME³ | |----------|-------------------------|-------|------------------|-----------|---------| | DAY | E-W | S-N | | START(UT) | END(UT) | | 01/05/01 | -0.74 | +0.67 | I | 8H18 E | 15H18 D | | 01/05/01 | -0.56 | +0.54 | I | 8H18 E | 15H18 D | | 01/05/01 | +1.21 | +0.65 | I | 8H18 E | 15H18 D | | 03/05/01 | +0.34 | +0.14 | I | 10H29 E | 12h36 D | | 05/05/01 | -0.99 | -0.33 | I | 8H17 E | 15h17 D | | 05/05/01 | -0.43 | +0.48 | I | 8H17 E | 15h17 D | | 05/05/01 | +0.79 | +0.19 | II | 8H17 E | 15H17 D | | 06/05/01 | -0.82 | -0.42 | I | 8H33 E | 15H17 D | | 06/05/01 | -0.19 | +0.53 | I | 8H33 E | 15H17 D | | 06/05/01 | +0.23 | +0.67 | I | 8H33 E | 15H17 D | | 06/05/01 | +1.26 | +0.33 | I | 8H33 E | 15H17 D | | 07/05/01 | +1.19 | -0.03 | I | 12H10 | 15H15 D | | 09/05/01 | -0.26 | -0.45 | I | 8H17 E | 15H17 D | | 10/05/01 | -0.08 | -0.45 | I | 11H20 | 15H17 D | |----------|-------|-------|--------------|----------|----------| | 10/05/01 | +0.02 | -0.28 | I | 8H17 E | 15H17 D | | 11/05/01 | -0.26 | -0.33 | I | 12H08 | 15H18 D | | 11/05/01 | +0.26 | -0.23 | I | 8H17 E | 15H18 D | | 12/05/01 | -0.90 | +0.25 | I | 8H17 E | 15H17 D | | 12/05/01 | -0.23 | -0.34 | II | 8H17 E | 15H17 D | | 12/05/01 | +0.05 | +0.28 | III | 8H17 E | 15H17 D | | 12/05/01 | +0.50 | -0.25 | II | 8H17 E | 15H17 D | | 13/05/01 | -0.82 | +0.31 | I | 8H17 E | 15H17 D | | 13/05/01 | -0.76 | +0.53 | Ī | 8H17 E | 15H17 D | | 13/05/01 | +0.03 | -0.28 | I | 8H17 E | 15H17 D | | 13/05/01 | +0.70 | -0.45 | II | 8H17 E | 15H17 D | | 14/05/01 | -0.53 | +0.51 | I | 8H17 E | 15H01 D | | 14/05/01 | +0.26 | -0.34 | I | 8H17 E | 15H01 D | | 14/05/01 | +0.85 | -0.25 | I | 8H17 E | 15H01 D | | 15/05/01 | +0.48 | -0.28 | I | 8H36 E | 15H18 D | | 16/05/01 | -0.16 | +0.34 | I | 8H18 E | 15H18 D | | 16/05/01 | +0.90 | -0.26 | I | 8H18 E | 15H18 D | | 17/05/01 | +1.01 | -0.47 | I | 8H17 E | 15H17 D | | 17/05/01 | +1.13 | -0.37 | I | 8H17 E | 15H17 D | | 18/05/01 | +1.07 | -0.48 | I | 8H17 E | 12H00 D | | 21/05/01 | -0.82 | +0.11 | I | 8H27 E | 15H18 D | | 21/05/01 | -0.79 | +0.31 | <del>i</del> | 8H27 E | 15H18 D | | 21/05/01 | -0.75 | +0.12 | II | 8H27 E | 15H18 D | | 22/05/01 | -0.57 | +0.17 | I | 8H59 E | 15H18 D | | 22/05/01 | -0.23 | +0.09 | I | 8H59 E | 15H18 D | | 23/05/01 | -0.34 | +0.11 | I | 9H20 E | 15H18 D | | 23/05/01 | +0.00 | +0.14 | I | 9H20 E | 15H18 D | | 23/05/01 | +0.11 | +0.23 | I | 9H20 E | 15H18 D | | 24/05/01 | +0.26 | +0.22 | I | 8H18 E | 15H18 D | | 24/05/01 | +0.28 | +0.05 | Ī | 8H18 E | 15H18 D | | 25/05/01 | +0.56 | +0.16 | II | 8H18 E | 14H34 D | | 26/05/01 | +0.79 | +0.12 | II | 8H18 E | 15H18 D | | 26/05/01 | +0.85 | +0.23 | II | 8H18 E | 15H18 D | | 27/05/01 | +1.04 | -0.09 | II | 8H18 E | 15H18 D | | 28/05/01 | +1.07 | +0.17 | III | 8H30 E | 15H18 D | | 29/05/01 | +1.32 | +0.17 | II | 8H18 E | 15H18 D | | 30/05/01 | +1.04 | +0.42 | I | 8H43 E | 15H18 D | | 30/05/01 | +1.35 | +0.09 | I | 8H43 E | 15H18 D | | 20102101 | T1.33 | TU.20 | <u> </u> | 01143 15 | 131110 D | 02, 04, 19, 20 NO DATA ## OTHERS DAYS: NO DETECTABLE NOISE STORM • For the days marked by an asterisk, intense ionopheric gravity waves are observed during the whole day. Without a mode detailed analysis leading to increase uncertainties in the deviation, the positions which are indicated are estimated within 0.2 R <sup>\*\*\*</sup> importance not well determined due to the proximity of the very strong other source. # COSMIC RAY INDICES (Neutron Monitor) May 2001 | | THULE | GOOSE BAY | CALGARY | KIEL | MOSCOM | CLIMAX | BEIJING | HALEAKALA | |--------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|--------------| | | Average | Day | (cts/h)/100 | (cts/h)/100 | (cts/h)/300 | (cts/h)/100 | (cts/h)/64 | (cts/h)/100 | (cts/h)/256 | (cts/h)/1000 | | - | 3925.7 | not | 3448.5 | 5482.4 | 8173.4 | 3610.3 | 1900.4 | 3440.7 | | 7 | 3962.8 | available | 3496.7 | 5542.8 | 8275.6 | 3665.8 | 1908.1 | 3459.0 | | က | 3976.7 | | 3518.2 | 5577.7 | 8343.6 | 3702.2 | 1915.6 | 3473.8 | | 4 | 4014.0 | | 3509.5 | 5588.6 | 8356.5 | 3698.0 | 1918.3 | 3477.2 | | 2 | 4060.5 | | 3542.2 | 5652.4 | 8420.4 | 3736.7 | 1929.4 | 3495.0 | | 9 | 4067.3 | | 3561.2 | 5675.3 | 8467.4 | 3759.3 | 1933.7 | 3501.8 | | 7 | 4077.6 | | 3569.3 | 5684.9 | 8489.7 | 3759.2 | 1942.5 | 3506.1 | | - ∞ | 4073.1 | | 3558.7 | 5659.0 | 8497.2 | 3746.8 | 1942.0 | 3507.1 | | တ | 4070.0 | | 3573.5 | 5679.6 | 8532.8 | 3774.4 | 1952.6 | 3529.0 | | 10 | 4089.4 | | 3596.8 | 5715.2 | 8562.7 | 3806.2 | 1954.1 | 3538.3 | | <del>-</del> | 4093.6 | | 3598.7 | 5718.7 | 8574.0 | 3797.9 | 1944.5 | 3531.5 | | 12 | 4070.1 | | 3563.3 | 5645.7 | 8497.0 | 3763.9 | 1928.3 | 3515.1 | | <u>5</u> | 4072.5 | | 3539.0 | 5680.7 | 8528.9 | 3760.8 | 1915.1 | 3521.5 | | 41 | 4061.0 | | 3547.3 | 5684.5 | 8541.8 | 3754.1 | 1920.0 | 3519.0 | | 15 | 4063.3 | | 3558.0 | 5674.3 | 8488.1 | 3758.0 | 1919.4 | 3521.2 | | 16 | 4057.0 | | 3553.0 | 5679.8 | 8487.8 | 3760.4 | 1918.5 | 3527.1 | | 17 | 4073.1 | | 3559.7 | 5694.1 | 8488.7 | 3777.5 | 1918.6 | 3526.0 | | 18 | 4086.6 | | 3583.2 | 5713.7 | 8517.3 | 3790.8 | 1913.8 | 3529.2 | | 19 | 4102.0 | | 3589.0 | 5720.0 | 8546.0 | 3795.4 | 1907.9 | 3534.9 | | 20 | 4098.6 | | 3604.7 | 5707.6 | 8543.5 | 3801.2 | 1898.2 | 3530.7 | | 7 | 4088.6 | | 3594.8 | 5693.8 | 8530.4 | 3794.8 | 1899.5 | 3527.9 | | 22 | 4070.6 | | 3569.7 | 5661.3 | 8478.9 | 3775.8 | 1889.6 | 3513.2 | | 23 | 4038.7 | | 3530.8 | 5607.6 | 8391.7 | 3728.0 | 1871.7 | 3485.2 | | 24 | 4015.5 | | 3505.8 | 5594.9 | 8371.7 | 3710.6 | 1871.2 | 3476.4 | | 25 | 3998.2 | | 3481.7 | 5564.0 | 8343.2 | 3687.9 | 1870.5 | 3467.9 | | 56 | 4014.0 | | 3485.8 | 5580.5 | 8350.2 | 3681.1 | 1873.0 | 3465.9 | | 27 | 4020.7 | | 3488.8 | 5546.0 | 8289.2 | 3691.9 | 1865.3 | 3473.3 | | 28 | 3926.3 | | 3424.3 | 5437.3 | 8156.5 | 3612.5 | 1852.4 | 3429.7 | | 59 | 3970.4 | | 3456.0 | 5501.5 | 8262.1 | 3649.0 | 1867.7 | 3459.1 | | 30 | 4012.5 | | 3487.0 | 5535.2 | 8312.1 | 3662.5 | 1878.5 | 3457.2 | | 31 | 4073.3 | | 3543.5 | 5650.0 | 8439.6 | 3740.7 | 1898.9 | 3502.1 | | Mean | 4042.0 | | 3536.7 | 5630.6 | 8427.7 | 3734.2 | 1907.1 | 3498.5 | For less than 24-hour coverage, parentheses enclose the number of hours for which data are available. For Climax, parentheses enclose the number of section hours whenever the sum of all three sections falls below 60 hours. COSMIC RAY INDICES (Neutron Monitor) COSMIC RAY INDICES (Neutron Monitor) COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2290 - Beginning 25 April 2001 COSMIC RAY INDICES (Neutron Monitor) COSMIC RAY INDICES (Neutron Monitor) COSMIC RAY INDICES (Neutron Monitor) Bartels Rotation 2291 - Beginning 22 May 2001 | 1958 | | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Mean | |--------------|--------------|--------------|---------------|--------------|--------------|-----------------------------------------|------------------------------------------|-------|------------------------------------------|----------------------|-----------------------------------|-----------------------------------------|-------| | | 8171* | 8175* | 7973* | 7971* | 8145* | 8330* | 8087* | 8266* | 8324* | 8291* | 8294* | 8378* | 8200* | | 1959 | 8405 | 8223 | 8443 | 8565 | 8309 | 8416 | 7911 | 7972 | 8054 | 8351 | 8397 | 8325 | 8281 | | 1960 | 8199 | 8313 | 8459 | 8264* | 8178* | 8272* | 8272* | 8417 | 8348 | 8348 | 8295 | 8464 | 8319* | | 4004 | 8619 | 8682 | 8731* | 8708* | 8791* | 8759* | 8472 | 8676 | 8808 | 8816 | 8957 | 8956 | 8748* | | 1961<br>1962 | 9061 | 8959 | 8996 | 8891 | 8964* | 8974 | 8977 | 8977 | 8908 | 8902 | 8973 | 9056 | 8940* | | 1962 | 9201 | 9308 | 9243 | 9239 | 9154 | 9180 | 9147 | 9109 | 9020 | 9110 | 9194 | 9259 | 9180 | | 1964 | 9321 | 9353 | 9395 | 9239<br>9416 | 9410 | 9396 | 9384 | 9425 | 9442 | 9473 | 9458 | 9594 | 9422 | | 1965 | 9602 | 9608 | 9642 | 9685 | 9701 | 9586 | 9530 | 9505 | 9520 | 9525 | 9608 | 9630 | 9595 | | 1966 | 9531 | 9502 | 9439 | 9367 | 9438 | 9336 | 9261 | 9242* | 8916 | 9325<br>9105* | 9178 | 9094 | 9284* | | 1967 | 9006 | 8973 | 9038 | 9059 | 8956 | 8940 | 9015 | 8913 | 8911 | 8924 | 8860 | 8873 | 8956 | | 1968 | 8904 | 8875* | 9036<br>8844* | 8892* | 8825* | 8690* | 8689 | 8725 | 8635* | 8533* | 8428 | 8394 | 8703* | | 1969 | 8628 | 8666 | 8606 | 8584 | 8334 | 8261 | 8378 | 8510 | 8612 | 8689 | 8731 | 8751 | 8562 | | 1970 | 8735 | 8799 | 8749 | 8639 | 8608 | 8418 | 8420 | 8540 | 8656 | 8702 | 8596 | 8827 | 8641 | | 1970 | 6133 | 0199 | 0143 | 0009 | 0000 | 0410 | 0420 | 0040 | 0030 | 0102 | 0030 | 0021 | 0041 | | 1971 | 8805 | 8921 | 8952 | 8982 | 9028 | 9185 | 9190 | 9219 | 9215 | 9285 | 9302 | 9276 | 9113 | | 1972 | 9260 | 9254 | 9367 | 9419 | 9364 | 9192 | 9311 | 8916 | 9275 | 9319 | 9298 | 9336 | 9275 | | 1973 | 9333 | 9321 | 9258 | 9107 | 8975 | 9160 | 9233 | 9263 | 9368 | 9376 | 9392 | 9423 | 9267 | | 1974 | 9431 | 9481 | 9390 | 9327 | 9153 | 9062 | 8916 | 9054 | 8983 | 9027 | 9092 | 9222 | 9178 | | 1975 | 9238 | 9317 | 9361 | 9405 | 9415 | 9425 | 9395 | 9339 | 9370 | 9361 | 9285* | 9330 | 9353* | | 1976 | 9339 | 9375 | 9370 | 9310 | 9363 | 9371 | 9423 | 9418 | 9423 | 9428 | 9440 | 9415 | 9380 | | 1977 | 9405 | 9404 | 9401 | 9392 | 9399 | 9318 | 9209 | 9236 | 9216 | 9302 | 9384* | 9341 | 9334* | | 1978 | 9279 | 9243 | 9254 | 9113 | 8907 | 9050 | 9035 | 9149 | 9189 | 9062 | 9118 | 9145 | 9216 | | 1979 | 9012 | 8955 | 8860 | 8693 | 8778 | 8599 | 8592 | 8396 | 8470 | 8662 | 8661 | 8857 | 8740 | | 1980 | 8752 | 8776 | 8871 | 8737 | 8732 | 8463 | 8430 | 8490 | 8491 | 8379 | 8259 | 8242 | 8552 | | | | | | | | | | | | | | | | | 1981 | 8451 | 8330 | 8311 | 8277 | 8176 | 8379 | 8332 | 8338 | 8452 | 8206 | 8289 | 8439 | 8332 | | 1982 | 8565 | 8277 | 8565 | 8649 | 8686 | 8279 | 7870 | 7882 | 7712 | 7931 | 8023 | 7902 | 8195 | | 1983 | 8150 | 8253 | 8460 | 8460 | 8194 | 8343 | 8498 | 8492 | 8575 | 8625 | 8658 | 8670 | 8448 | | 1984 | 8736 | 8686 | 8574 | 8505 | 8286 | 8421 | 8476 | 8590 | 8632 | 8669 | 8641 | 8644 | 8575 | | 1985 | 8671 | 8813 | 8878 | 8973 | 8958 | 9066 | 9018 | 9017 | 9140 | 9155 | 9233 | 9183 | 9009 | | 1986 | 9162 | 8982 | 9125 | 9316 | 9339 | 9328 | 9326 | 9327 | 9368 | 9444 | 9312 | 9472 | 9292 | | 1987 | 9553 | 9646 | 9619 | 9618 | 9505 | 9349 | 9268 | 9202 | 9149 | 9153 | 9085 | 9094 | 9353 | | 1988 | 8885 | 8922 | 8979 | 8968 | 8961 | 8904 | 8724 | 8704 | 8745 | 8716 | 8699 | 8474 | 8807 | | 1989 | 8381 | 8385 | 7985 | 8043 | 7868 | 7888 | 8102 | 7977 | 7897 | 7709 | 7592 | 7701 | 7961 | | 1990 | 7871 | 7910 | 7846 | 7652 | 7574 | 7569 | 7755 | 7701 | 7864 | 8037 | 8168 | 8185 | 7844 | | 1991 | 8356 | 8347 | 7850 | 7915 | 7926 | 7025 | 7082 | 7510 | 7863 | 7964 | 8008 | 8153 | 7833 | | 1992 | 8169 | 8078 | 8247 | 8490 | 8378 | 8535 | 8670 | 8649 | 8614 | 8767 | 8717 | 8833 | 8512 | | 1993 | 8804 | 8784 | 8705 | 8846 | 8842 | 8888 | 8884 | 8880 | 8968 | 8968 | 9010 | 9011 | 8882 | | 1993 | 9001 | 8895 | 8899 | 8898 | 8942 | 8963 | 9013 | 9055 | 9110 | 9098 | 9141 | 9112 | 9011 | | 1995 | 9122 | 9206 | 9169 | 9193 | 9159 | 9186 | 9203 | 9228 | 9272 | 9257 | 9241 | 9286 | 9210 | | 1995 | 9122 | 9328 | 9324 | 9193 | 9159 | 9302 | 9203<br>9295 | 9302 | 9364 | 923 <i>1</i><br>9226 | 9192 | 9200 | 9284 | | 1996 | 9266<br>9240 | 9326<br>9311 | 9324<br>9334 | 9302 | 9340 | 9302 | 9295<br>9277 | 9302 | 9390 | 9281 | 9233 | 9227 | 9297 | | 1997 | 9273 | 9306 | 9334 | 9057 | 8981 | 8983 | 9088 | 9007 | 9157 | 9196 | 9133 | 9036 | 9127 | | 1 | 9273<br>8883 | 9306<br>8867 | 9312<br>8887 | 9057<br>8937 | 9021 | 9018 | 9058 | 8904 | 9157<br>8794 | 8660 | 9133<br>8627 | 9036<br>8574 | 8853 | | 1999 | 8600 | | | 8358 | 9021<br>8283 | | 9058<br>7921 | 8081 | 8794<br>8224 | 8365 | 8146 | 8215 | 8263 | | 2000 | OUUU | 8481 | 8377 | 0000 | 0203 | 8107 | 1921 | 0U0 I | 0224 | 0303 | 0140 | 0213 | 0203 | | 2001 | 8314 | 8521 | 8617 | 8168 | 8428 | >2×2×2×2×2×2×2×2×2×2×2×2×2×2×2×2×2×2×2× | 0 40 40 40 40 40 40 40 40 40 40 40 40 40 | | 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- | | p-2-2-5-6-49494949494949494949494 | *************************************** | 8410 | Multiply table entries by 64 to obtain hourly counting rate. Moscow, Russia: N55, E37, Alt= 200 m, Cutoff Rigidity= 2.42GV. NOTE: \* Indicates data have been restored using the corresponding data of other cosmic ray stations. # Geomagnetic Activity Indices May 2001 | Day | Kp Three-Hou | rly Indices<br>5 6 7 8 | | | | Km I | hree | -Hou | ırly | Ind | ices<br>7 | 8 | Am | aa<br>N | Provi: | sional | М | |------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------| | 1 Q5<br>2 Q6<br>3<br>4<br>5 Q2 | 1 0+ 1- 1-<br>1 1+ 2 2-<br>2 1 1 2+<br>1 2 3 2<br>0+ 0+ 1- 1- | 1 0+ 2- 1-<br>1 1+ 1- 1-<br>1+ 2- 2- 2-<br>1 1 2- 2-<br>0 1- 1 1 | 6+<br>10-<br>13-<br>13+<br>5- | 3<br>5<br>6<br>7<br>3 | 0.1<br>0.2<br>0.3<br>0.3 | 10 1<br>2- 1<br>10 2 | 0+ 1c<br>+ 2+<br>.0 1+<br>20 3-<br>0+ 1c | - 20<br>- 30<br>- 3- | 1<br>2<br>1 | 1+ 1<br>2- 2<br>1+ 1 | - 1+<br>+ 10<br>- 2-<br>0 2-<br>- 10 | 1-<br>0+<br>2-<br>2- | 5<br>9<br>13<br>14<br>4 | | | 4<br>11<br>15<br>17 | 8 CK | | 6 Q8<br>7 8<br>9 D1<br>10 D4 | 0+ 0+ 2- 1+<br>3- 4 3+ 2<br>1+ 1- 2+ 2+<br>5 5 4- 4-<br>5+ 5 4- 3- | 1+ 1 2- 2<br>3- 2 3- 1-<br>3+ 4- 4+ 4<br>5- 5+ 5 4+<br>3- 2+ 3 3- | 10-<br>20<br>22<br>37-<br>27+ | 5<br>12<br>16<br>39<br>23 | 0.2<br>0.7<br>0.9<br>1.4<br>1.1 | 3- 3<br>1+ 1<br>4+ 5 | - 2-<br>3+ 3+<br>.0 3-<br>5- 3+<br>5- 40 | 3-<br>3-<br>4- | 3<br>3<br>4 | 3- 3<br>30 3<br>4+ 5 | - 1+<br>- 3-<br>0 4-<br>- 4+<br>+ 3+ | 1-<br>4-<br>40 | 9<br>25<br>27<br>60<br>42 | 9<br>26<br>32<br>56<br>40 | 8<br>24<br>28<br>54<br>32 | 25<br>11 | 12 CK<br>25<br>49<br>74<br>30 | | 11<br>12 D2<br>13 D3<br>14<br>15 | 2+ 1 1+ 1<br>3+ 2+ 3+ 5-<br>5 3+ 2+ 2+<br>4+ 3 3 1<br>1+ 2- 3- 2+ | 0+ 1- 2- 3+<br>5+ 4+ 4+ 5-<br>3+ 4 5+ 4+<br>1 2- 2- 1<br>2- 3 4- 3 | 12-<br>32+<br>30<br>17-<br>19+ | 6<br>30<br>27<br>11<br>11 | 0.3<br>1.3<br>1.2<br>0.6<br>0.6 | 30 3<br>5- 3<br>40 3 | .+ 2-<br>30 3+<br>3+ 3-<br>30 3+<br>20 30 | - 4+<br>- 2+<br>- 10 | 3 | 4o 5<br>3o 4<br>1o 1 | + 2-<br>+ 40<br>- 5-<br>+ 2-<br>- 30 | 4+<br>5-<br>10 | 14<br>56<br>47<br>21<br>24 | 14<br>43<br>60<br>17<br>31 | 8<br>52<br>32<br>20<br>28 | 29<br>33 | 12 C<br>67<br>59<br>9<br>34 | | 16<br>17<br>18<br>19<br>20 Q10 | 3- 2 3- 2-<br>2- 2 1 1<br>3- 2+ 1 1<br>4 4- 2- 1<br>0 1 2- 2- 1+ | 1+ 1+ 1- 2+<br>1 2 2- 2+<br>2- 1+ 1+ 3<br>1+ 1- 2- 1-<br>2 1+ 1 1 | 15-<br>13-<br>14+<br>15-<br>11 | 7<br>6<br>8<br>10<br>5 | 0.4<br>0.3<br>0.4<br>0.5 | 2- 2<br>3- 2<br>4- 3 | 2+ 3c<br>2+ 1+<br>2+ 1+<br>3+ 2-<br>20 2c | 2 <del>-</del><br>20<br>- 1+ | | 10 1<br>2- 1<br>1+ 1 | + 1-<br>+ 1+<br>+ 10<br>- 2-<br>+ 10 | 2+<br>3-<br>1- | 18<br>12<br>15<br>17 | 15<br>15<br>18<br>21<br>11 | 15<br>13<br>12<br>16<br>7 | 14<br>15<br>30 | 9<br>14 K<br>15<br>8<br>11 CC | | 21 Q4<br>22<br>23<br>24 Q9<br>25 | 1- 1- 1- 1+<br>1+ 1+ 1+ 2<br>2+ 2 2- 1+<br>2+ 2 1- 1<br>1+ 1 1 1+ | 1 1- 1 1-<br>2 2 3- 2<br>2+ 3+ 2+ 2+<br>1 1 1 1<br>2+ 3- 3- 1 | 7-<br>15-<br>18-<br>10<br>13+ | 4<br>7<br>9<br>5<br>7 | 0.1<br>0.3<br>0.5<br>0.2 | 1+ 1<br>2+ 2<br>2+ 2 | 1- 10<br>1+ 2-<br>20 2-<br>20 1+<br>1- 20 | - 2+<br>- 2-<br>- 1+ | -<br>-<br>-<br>-<br>- | 1+ 2<br>2o 3<br>1o 1 | - 1-<br>o 2o<br>- 2+<br>o 1o<br>+ 2+ | 20<br>20<br>1+ | 6<br>13<br>15<br>10<br>13 | 9<br>18<br>21<br>10<br>13 | 5<br>9<br>9<br>8<br>8 | 10<br>12<br>11 | 18<br>7 CC | | 31 Q1 | 0+ 0+ 0+ 1<br>2+ 2 2+ 4-<br>3 2- 1 1<br>0+ 0+ 0 0+<br>0+ 0+ 0 0+ | 1- 1- 1- 1<br>1+ 4+ 3- 2<br>4- 4+ 3+ 4<br>3 3+ 1+ 1-<br>1+ 1- 1+ 1<br>1 1- 1- 1- | 10-<br>12+<br>26-<br>15<br>5+<br>4 | 3<br>2 | 0.2<br>0.4<br>1.0<br>0.5<br>0.1 | 0+ 0<br>20 2<br>30 2<br>0+ 0 | 2+ 20<br>0+ 0+<br>2+ 20<br>20 1+<br>00 0+ | + 10<br>- 4-<br>+ 2-<br>+ 1-<br>+ 0+ | | 20 3<br>3+ 4<br>3- 3<br>1+ 1<br>10 1 | - 10<br>+ 2+<br>- 3-<br>- 1+<br>- 10<br>0 0+ | 2+<br>3+<br>1-<br>10 | 3 | 7<br>18<br>32<br>22<br>8<br>5 | 9<br>20<br>11<br>4<br>2 | 4<br>18<br>14<br>2<br>2 | 4 CC<br>23 KK<br>35<br>19<br>10 CK<br>5 CC | | Mean | | | | 10 | 0.47 | | | | | | | | | | 9 15. | | | | | | | | | | | | | | | ==== | | | | | | | | | Kn Three-Hourl 1 2 3 4 | y Indices<br>5 6 7 8 | An | | | urly | Indi<br>5 6 | ices<br>7 | 8 | | As | | | | | | | | Day 1 2 3 | Kn Three-Hourl 1 2 3 4 1- 1- 1+ 1+ 10 1+ 3- 20 2- 1+ 2- 30 1+ 20 30 3- 1- 1- 1+ 10 | y Indices 5 6 7 8 | An 7 11 15 15 6 | Ks Th<br>1 2<br>0+ 0c<br>1o 1c<br>2o 1-<br>1o 2- | | urly<br><br>1<br>1<br>1 | Indi<br>5 6<br>10 0+<br>1+ 10<br>1+ 1+<br>1+ 00 | 1 ces<br>7<br>+ 10<br>> 1-<br>+ 2-<br>> 1+ | 8<br>1-<br>00<br>1+<br>1+ | | As<br><br>4<br>8 | | P<br>4#<br>0 | rov<br>Ri | | | IMF | | Day 1 2 3 4 5 | Kn Three-Hourl 1 2 3 4 1- 1- 1+ 1+ 10 1+ 3- 20 2- 1+ 2- 30 1+ 20 30 3- | y Indices 5 6 7 8 1+ 1- 1+ 1- 1+ 1+ 10 10 2+ 2+ 2- 2- 1+ 1+ 2- 2- | An<br>7<br>11<br>15<br>15 | Ks Th<br>1 2<br>0+ 0c<br>1o 1c<br>2o 1-<br>1o 2-<br>0o 0c<br>0o 0c<br>3o 3-<br>2- 1-<br>4+ 5- | 3 4<br>0 10 0+<br>0 20 20<br>10 30<br>3 3 30 | urly 5 | Indi<br>5 6<br>10 0+<br>1+ 10<br>1+ 1+ | 10es<br>7<br>+ 10<br>0 1-<br>+ 2-<br>0 1+<br>+ 10<br>+ 3-<br>- 4-<br>- 4+ | 8<br>1-<br>00<br>1+<br>1+<br>10<br>2-<br>0+<br>4-<br>40 | | As<br><br>4<br>8<br>11<br>12 | Sa<br>187.<br>179.<br>175.<br>178. | P 4 # 0 1 6 5 5 8 9 1 9 | rov<br>Ri<br><br>115<br>118<br>115<br>132 | Ra<br>123<br>127<br>128<br>140 | Rs 140 131 127 131 | IMF | | Day 1 2 3 4 5 6 7 8 9 | Kn Three-Hourl 1 2 3 4 1- 1- 1+ 1+ 10 1+ 3- 20 2- 1+ 2- 30 1+ 20 30 3- 1- 1- 1+ 10 1- 10 20 2+ 3- 4- 4- 3- 1+ 1+ 30 3- 40 4+ 3+ 40 | y Indices 5 6 7 8 1+ 1- 1+ 1- 1+ 1+ 10 10 2+ 2+ 2- 2- 1+ 1+ 2- 2- 00 10 1+ 1+ 20 10 2- 2+ 3- 3- 3- 1- 30 30 4- 4- 5- 4+ 4+ 4- | An 7 11 15 15 6 12 27 28 57 | Ks Th 1 2 | ree-Hora 4<br> | urly 5 | Indi<br>5 6<br>10 0+1<br>1+ 1c<br>1+ 1+<br>1+ 0c<br>00 0+<br>1- 0+3<br>3- 2+<br>30 3-<br>1+ 5- | 10es<br>7<br> | 8<br>1-<br>00<br>1+<br>1+<br>10<br>2-<br>0+<br>4-<br>40<br>3-<br>5-<br>50<br>1- | | As 4<br>8<br>11<br>12<br>3<br>5<br>22<br>26<br>62 | Sa<br>187.<br>179.<br>175.<br>178.<br>163.<br>157.<br>140.<br>131. | P 4 # 0 1 6 5 5 8 9 1 9 0 . 4 0 . 9 . 2 | rov Ri 115 118 115 132 118 92 79 55 63 | Ra 123 127 128 140 125 94 77 62 64 | Rs | IMF | | Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Kn Three-Hourl 1 2 3 4 1-1-1+1+ 10 1+3-20 2-1+2-30 1+20 30 3- 1-1-1+10 1-10 20 2+ 3-4-4-3- 1+1+30 3- 40 4+3+40 40 4+4+3- 2+1+1+1+30 2+3+5-5-4-3-3- 40 30 30 1+ | y Indices 5 6 7 8 | An 7 11 15 15 6 6 12 27 28 57 37 14 59 47 21 | Ks Th 1 2 0+ 0c 10 1c 20 1- 10 2- 00 0c 30 3- 2- 1- 4+ 5- 50 5- 2- 1+ 3+ 3+ 5- 3+ 40 3+ 20 2+ 20 2c 4- 3+ | 10 0+ 0 20 20 20 20 0+ 0 20 3 3 30 0+ 0+ 0 1+ 1+ 23 3 3- 35 34 4- 40 4- 20 2- 4- 10 | urly 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Indi<br>5 6<br><br>10 0+<br>1+ 10<br>1+ 10<br>1+ 10<br>1+ 10<br>1+ 10<br>1- 0+<br>3- 2+<br>3- 20<br>1+ 3+<br>3- 3+<br>1+ 3+<br>3- 3+<br>1+ 3+<br>10 0+<br>10 0+<br>11 0+<br>12 0+<br>13 0+<br>14 0+<br>15 0+<br>16 0+<br>17 0+<br>17 0+<br>18 0+ | 7<br>7<br>1 10 1 -<br>1 2 -<br>2 1 1 +<br>1 1 0 1 -<br>1 4 -<br>1 4 -<br>1 4 -<br>1 5 -<br>1 4 -<br>1 5 -<br>1 5 -<br>1 6 -<br>1 7 1 6 -<br>1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 | 8<br>1-<br>000<br>1+<br>1+<br>10<br>2-<br>0+<br>4-<br>4-<br>3-<br>5-<br>5-<br>5-<br>1-<br>30<br>2+<br>2-<br>2-<br>0+ | | As 8 11 12 3 5 22 26 62 47 14 53 48 21 | Sa<br>187.<br>179.<br>175.<br>178.<br>163.<br>157.<br>140.<br>131.<br>133.<br>139.<br>141.<br>141. | P P 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | rov<br>Ri<br>-115<br>118<br>115<br>132<br>118<br>92<br>79<br>55<br>63<br>60<br>80<br>84<br>85<br>102 | Ra 123 127 128 140 125 94 77 62 64 66 86 92 94 107 | Rs 140 131 127 131 115 108 90 80 80 82 89 90 91 90 | IMF | | Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | Kn Three-Hourl 1 2 3 4 | y Indices 5 6 7 8 | An 7 11 15 15 6 12 27 28 57 37 14 59 47 21 25 20 14 18 19 | Ks Th 1 2 0+ 0c 10 1c 20 1- 10 2- 00 0c 30 3- 2- 1- 4+ 5- 50 5- 2- 1+ 3+ 3+ 5- 3+ 40 3+ 20 2+ 20 2c 4- 3+ 1- 1+ 00 0+ 10 1+ 20 2c 2+ | 10 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ | | Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi<br>Indi | 1 Ces 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1-<br>000<br>1+<br>1+<br>100<br>2-<br>0+<br>4-<br>403<br>3-<br>3-<br>30<br>2+<br>2-<br>2+<br>0+<br>0+<br>0+<br>1-<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | | As | Sa<br>187.<br>179.<br>1778.<br>163.<br>157.<br>140.<br>131.<br>133.<br>139.<br>141.<br>141.<br>145.<br>140.<br>150. | P P 4 4 # 0 1 6 5 8 9 1 9 0 4 0 9 2 2 9 8 5 6 9 8 8 8 8 7 | rov Ri 115 118 115 132 118 92 79 55 63 60 84 85 102 96 100 85 | Ra 123 127 128 140 125 94 77 62 64 66 92 94 107 103 103 105 101 90 | Rs 140 131 127 131 115 108 90 80 80 82 89 90 91 90 95 90 101 91 94 | IMF | | Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | Kn Three-Hourl 1 2 3 4 | y Indices 5 6 7 8 | An 7 11 15 15 6 6 12 27 28 57 37 14 59 47 21 25 20 14 18 19 12 9 17 20 11 16 13 18 37 19 7 6 | Ks Th 1 2 | 10 10 0+<br>10 10 0+<br>10 10 0+<br>10 20 20 20 20 20 30 30 30 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40 | urly 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | Indii | 1 Ces 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8<br>1-<br>000<br>1+<br>1+<br>100<br>2-<br>0+<br>4-<br>400<br>3-<br>3-<br>3-<br>3-<br>0+<br>2-<br>2-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1-<br>1 | | As | Sa<br>187.<br>179.<br>178.<br>163.<br>157.<br>140.<br>131.<br>133.<br>139.<br>141.<br>141.<br>145.<br>140.<br>150.<br>141.<br>144.<br>153.<br>152.<br>174.<br>163. | P P P P P P P P P P P P P P P P P P P | rov Ri 115 118 115 132 118 92 75 63 60 84 85 102 96 99 95 121 134 118 112 118 112 118 112 118 124 103 92 75 69 | Ra 123 127 128 140 125 94 77 62 64 66 86 92 94 107 103 105 101 90 85 | Rs 140 131 127 131 115 108 90 80 80 82 89 90 91 90 101 91 94 94 104 114 127 117 101 101 97 92 85 86 | IMF | # Daily Average Indices Ap Jun 2000 -May 2001 | 1 8 7 12 16 13 7 6 2 8 6 38 3 2 6 4 10 23 10 4 3 4 6 8 22 5 3 11 8 9 7 30 3 10 8 1 15 6 6 4 12 8 17 18 63 26 9 11 1 19 23 7 5 24 9 25 7 116 14 5 5 3 20 19 3 6 15 5 16 12 4 55 7 4 14 7 13 5 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 5 5 4 | Day | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan 01 | Feb | Mar | Apr | May | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|-----|------------|-----| | 2 6 4 10 23 10 4 3 4 6 8 22 5 3 11 8 9 7 30 3 10 8 1 15 6 6 4 12 8 17 18 63 26 9 11 1 19 23 7 5 24 9 25 7 116 14 5 5 3 20 19 3 6 15 5 16 12 4 55 7 4 14 7 13 5 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 <td>1</td> <td>8</td> <td>7</td> <td>12</td> <td>16</td> <td>13</td> <td>7</td> <td>6</td> <td>2</td> <td>8</td> <td>6</td> <td>38</td> <td>3</td> | 1 | 8 | 7 | 12 | 16 | 13 | 7 | 6 | 2 | 8 | 6 | 38 | 3 | | 3 11 8 9 7 30 3 10 8 1 15 6 6 4 12 8 17 18 63 26 9 11 1 19 23 7 5 24 9 25 7 116 14 5 5 3 20 19 3 6 15 5 16 12 4 55 7 4 14 7 13 5 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 4 | 2 | 6 | 4 | | 23 | 10 | | 3 | 4 | 6 | | | 5 | | 5 24 9 25 7 116 14 5 5 3 20 19 3 6 15 5 16 12 4 55 7 4 14 7 13 5 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 16 | 3 | 11 | 8 | 9 | 7 | 30 | 3 | 10 | 8 | 1 | 15 | | | | 6 | 4 | | | | | | | 9 | | | | | 7 | | 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 | 5 | 24 | 9 | 25 | 7 | 116 | 14 | 5 | 5 | 3 | 20 | 19 | 3 | | 7 11 5 7 15 4 46 15 5 6 9 20 12 8 64 6 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 | | | | | | | | | | | | | | | 8 64 6 6 17 2 18 18 10 6 6 63 16 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 5 | | | | | | | | | | | | | | | 9 5 6 5 5 4 13 18 5 5 6 20 39 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 <td></td> | | | | | | | | | | | | | | | 10 21 20 25 4 8 42 11 5 6 5 11 23 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 </td <td></td> | | | | | | | | | | | | | | | 11 25 34 47 4 15 16 8 7 6 4 85 6 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 | | | | | | | | | | | | | | | 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 | 10 | 21 | 20 | 25 | 4 | 8 | 42 | 11 | 5 | 6 | 5 | 11 | 23 | | 12 15 9 123 21 6 20 5 7 6 11 50 30 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 | | | | 4-7 | 4 | 45 | 40 | | 7 | | 4 | <b>0</b> - | • | | 13 10 42 19 10 36 9 5 6 25 9 50 27 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | 14 29 51 12 4 45 5 3 8 19 7 18 11 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2< | | | | | | | | 5 | | | | | | | 15 23 164 8 12 8 4 2 6 5 2 13 11 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | 16 5 50 7 29 10 3 3 6 3 2 8 7 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8< | | | | | | | 5 | 3 | | | | | | | 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 | 15 | 23 | 164 | 8 | 12 | 8 | 4 | 2 | 0 | 5 | Z | 13 | 11 | | 17 6 8 6 56 11 3 9 6 2 4 6 6 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 | 16 | E | EΛ | 7 | 20 | 10 | 2 | 2 | 6 | 2 | 2 | Ω | 7 | | 18 10 12 3 70 9 5 9 4 3 8 50 8 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 6 7 26 40 19 5 24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ა<br/>ე</td><td></td><td></td><td></td></td<> | | | | | | | | | | ა<br>ე | | | | | 19 6 14 4 30 9 6 5 4 4 37 6 10 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> | | | | | | | | | | | | | | | 20 6 36 4 12 3 8 3 9 7 74 6 5 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 < | | | | | | | | | | | | | | | 21 6 7 10 9 3 9 4 19 6 8 8 4 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6< | | | | | | 3 | | 3 | | | | | | | 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 | 20 | U | 30 | ~ | 12 | | | | 3 | | 17 | | | | 22 11 12 2 6 16 8 6 12 5 12 37 7 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 | 21 | 6 | 7 | 10 | 9 | 3 | 9 | 4 | 19 | 6 | 8 | 8 | 4 | | 23 27 23 7 7 15 6 21 18 10 28 16 9 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | | | | | | | | | | | 24 15 5 8 12 9 11 6 20 4 11 6 5 25 6 5 3 19 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | | | | | | | | | | | 25 6 5 3 19 6 6 6 6 6 2 6 6 7 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | | | | | | | | | | | 26 40 19 5 24 8 28 6 11 10 4 6 5 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | 5 | 3 | | | | | | | | | 7 | | 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | • | | | | | | | | _ | | | | | 27 18 7 7 11 4 45 8 4 12 27 4 8 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | 26 | 40 | 19 | 5 | 24 | 8 | 28 | 6 | 11 | 10 | 4 | 6 | 5 | | 28 10 32 27 12 20 31 6 8 9 44 40 18 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | | | | | | | | | | | 29 8 27 35 7 34 56 6 16 22 13 9 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | 12 | 20 | | | | 9 | | 40 | 18 | | 30 4 8 12 51 15 6 3 3 12 1 3 31 21 14 13 2 18 192 2 | | | | | | | | 6 | | | | 13 | | | 31 21 14 13 2 18 192 2 | | | | | 51 | | | | | | | | 3 | | | | | | | | | | | | | | | 2 | | | | 15 | | | 18 | | 17 | | | 7 | | 22 | | PLANETARY 3-HOUR-RANGE INDICES (Kp) BY 27-DAY SOLAR ROTATION INTERVAL #### PLANETARY GEOMAGNETIC ACTIVITY #### 3-HOUR-RANGE INDICES Km AND aa BY 27-DAY SOLAR ROTATION INTERVAL ISGI PUBLICATION OFFICE — EMail : ISGI.PUBOFF@cetp.ipsl.fr CETP, 4 Avenue de Neptune, F-94107 Saint Maur des Fosses CEDEX — FRANCE Indices Derivation at C.E.T.P.; Graph Prepared at ISGI Publication Office. Indices Derivation at C.E.T.P.; Graph Prepared at ISGI Publication Office. 30 25 20 10 HOURLY EQUATORIAL DST VALUES (PROVISIONAL) 2001 MAV | | T.<br>24 | 13<br>13<br>6 | -15<br>-29<br>-59 | -41<br>-26<br>-33<br>-16 | 70086 | 17<br>18<br>11<br>5 | -31<br>-31<br>-9 | 16 | 00 NT | | |------|----------|----------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|-----| | | U. | 13 13 33 33 | 10<br>-14<br>-25<br>-40 | -34<br>-24<br>-44<br>-17 | n 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 12<br>26<br>18<br>4 | -27<br>-27<br>-28 | 17 | | | | | 22 | 14<br>17<br>12<br>13 | 113 | | 84-7-25 | 10<br>28<br>17<br>3 | 10<br>118<br>-33<br>-1 | 20 | { | 4 | | | 21 | 10<br>10<br>6 | 114<br>13<br>49<br>34 | | 4022 | 36<br>16<br>8 | -34<br>-7 | 18 | 5 | 1 | | | 20 | 14<br>44<br>44 | -12<br>-24<br>-62 | | 4228 | 30<br>14<br>9 | 7<br>- 2<br>- 3<br>- 2<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3 | 16 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | 19 | 9 | 12<br>21<br>69<br>-45 | | 8-1248 | 122<br>122<br>6 | 288<br>-39<br>-111 | 10 | <u> </u> | | | | 18 | 279 | 10<br>-22<br>-26<br>-45 | | 12-150 | 1172 | -27<br>-36<br>-13 | 8 | | - | | | 17 | 46624 | 24<br>57<br>-39 | 1225223 | 1225-0 | 1181 | -22<br>-138<br>114 | 9 | <b>3</b><br> <b>3</b> | + | | | | | | | | | | | \{\bar{\}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 4 | | | 16 | 49807 | -18<br>-24<br>-46 | | 2111 | 102<br>102<br>102 | | 0 | { <br> } | _ | | | 1 2 | 46619 | -12<br>-45<br>-41 | | 2 - 1 - 1 - 2 - 2 | 17<br>17<br>8 | 1-15<br>1-15<br>3 | $\overline{\Box}$ | | | | | 14 | 10<br>10<br>17 | 135920 | | L 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18<br>17<br>17 | 117<br>118<br>14<br>18 | 1 | | 4 | | 2001 | 13 | 48252 | 13<br>-17<br>-42 | | 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 18<br>22<br>6<br>10 | 113 | 2 | 1 | | | | 12 | | 15<br>5<br>29 | | 1133 | 19<br>22<br>7<br>10 | 1110 | 9 | | | | MAY | 1 | 10 | 1 1 2 1 2 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 | -24<br>-44<br>-111<br>-20 | 111111 | 21<br>23<br>12<br>12 | 111<br>12<br>12<br>16 | 9 | 154 | 4 | | | 10 | 11<br>14<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 15<br>-24<br>-45<br>-53 | | -10<br>-2<br>-2<br>4 | 23<br>28<br>16 | 116<br>24<br>0 | 9 | | - | | | 6 | 112 | | -29<br>-14<br>-17 | 111 | 24<br>10<br>15 | 18<br>27<br>1<br>0 | 4 | | | | | | | | | | | | | 1.{ | | | | 8 | 112<br>115<br>10 | 8<br>18<br>40<br>66 | | -12 $-13$ $-10$ 5 | 24<br>26<br>13<br>12 | 112<br>-23<br>-23 | 4 | 13 | | | | 7 | 110<br>100<br>100<br>100 | 7<br>-21<br>-15<br>-48<br>-70 | | -15 | 23<br>21<br>10 | 115<br>123<br>173<br>15 | က | ΙŞ | | | | 9 | 162<br>168<br>154<br>154 | -34<br>-51<br>-69 | -23<br>-24<br>-30 | -14<br>-15<br>-15 | 10<br>17<br>10<br>10 | 112<br>116<br>1-8 | 2 | | - | | | 2 | 17<br>17<br>10 | 111<br>152<br>66 | <br> | 1133 | 25<br>11<br>11 | | 4 | | - | | | 4 | 1-5<br>1-5<br>1-4<br>1-6 | 10<br>-23<br>-46<br>-67 | -38<br>-42<br>-12 | $\begin{array}{c} -16 \\ -9 \\ -20 \\ -2 \end{array}$ | 28<br>33<br>11 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ည | | | | | က | -23<br>10<br>15 | | | -15<br>-20<br>-20 | 230<br>290<br>8 | 10333 | 4 | | - | | | NT 2 | - 1 - 1 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 | -16<br>-40<br>-67 | | 111111111111111111111111111111111111111 | 22<br>68346 | -116<br>-106 | က | | 4 | | | UNIT=NT | 0<br>7<br>1<br>1<br>9 | -115<br>-38<br>-63 | 1 1 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 17505 | 127778 | 6<br>-20<br>-8 | 0 | | _ | | | | DAY<br>1<br>2<br>3<br>4<br>5 | 6<br>10<br>10 | 1288<br>5 <b>4</b> 3 | 2118<br>20<br>20<br>20 | 222<br>232<br>24<br>254 | 26<br>27<br>29<br>30 | 31 | 2001 | MAY | Note: The baselines for the observatories were adjusted for secular change for the Provisional Dst values for May 2001. ## PRINCIPAL MAGNETIC STORMS MAY | | | Com | nencer | nent | sc | Amplitud | les | | | | Ranges | | E | nd | |-----|--------|-----|--------|------|-------|----------|---------|------------------------|---|-------|---------|---------|-----|-----| | | Geomag | | Time | | D | Н | Z | Maximum 3-Hour K Index | | D | Н | Z | | Hou | | Sta | Lat | Day | (UT) | Type | (Min) | (Gamma) | (Gamma) | Day(3-Hour Periods) | K | (Min) | (Gamma) | (Gamma) | Day | (UT | | KRC | 16.4N | 08 | 1815 | | | | | 09(4,5,6,7) | 5 | 7 | 89 | 56 | 10 | 09 | | UJJ | 13.6N | 80 | 0700 | | | | | | - | 8 | 83 | 38 | 09 | 23 | | NGP | 11.3N | 80 | 0700 | | | | | | - | 4 | 56 | 38 | 09 | 23 | | ABG | 09.4N | 80 | 0700 | | | | | 09(1,5,6,7) | 5 | 9 | 103 | 51 | 09 | 23 | | HYB | 07.6N | 80 | 0700 | | | | | 09(6,7) | 5 | 8 | 112 | 32 | 09 | 23 | | PND | 02.0N | 80 | 0700 | | | | | | - | 7 | 124 | 166 | 09 | 23 | | TIR | 00.6s | 80 | 0700 | | | | | | - | | 193 | 66 | 09 | 23 | | ETT | 00.7s | 80 | 0700 | | | | | | - | | 181 | 57 | 10 | 23 | | HER | 33.68 | 80 | 09 | •• | | • • | • • | 09(1) | 5 | 35 | 99 | 87 | 10 | 80 | | нүв | 07.6N | 11 | 2000 | | | | | 12(7) | 5 | 7 | 123 | 55 | 14 | 10 | | ETT | 00.7s | 11 | 2100 | •• | • • | •• | • • | | - | | 200 | 61 | 14 | 20 | | KRC | 16.4N | 12 | 0014 | | | | | 12(7) | 5 | 6 | 111 | 40 | 13 | 08 | | | 13.6N | 12 | 1000 | | | | | • • | - | 5 | 94 | 38 | 13 | 22 | | | 11.3N | 12 | 1000 | | | | | | - | 5 | 119 | 35 | 13 | 22 | | ABG | 09.4N | 12 | 1000 | | | | | 12(4,7) 13(1,6,8) | 4 | 6 | 108 | 52 | 13 | 22 | | PND | 02.0N | 12 | 1000 | | | | | | - | 5 | 142 | 169 | 13 | 22 | | TIR | 00.6s | 12 | 1000 | | | | | | - | 7 | 238 | 74 | 13 | 22 | | HER | 33.6s | 12 | 09 | •• | • • | •• | | 12(8) 13(7,8) | 5 | 26 | 96 | 85 | 14 | 80 | | UJJ | 13.6N | 27 | 1400 | | | | | | - | 6 | 123 | 30 | 28 | 20 | | NGP | 11.3N | 27 | 1400 | | | | | | _ | 6 | 154 | 27 | 28 | 20 | | ABG | 09.4N | 27 | 1400 | | | | | 27(5,6) 28(4,6,8) | 4 | 7 | 142 | 38 | 28 | 20 | | нүв | 07.6N | 27 | 1500 | SC | - 0.3 | 23 | - 2 | 28(4,5,6) | 4 | 7 | 145 | 21 | 29 | 22 | | PND | 02.0N | 27 | 1400 | | | | | | - | 6 | 134 | 146 | 28 | 20 | | TIR | 00.6s | 27 | 1400 | | | | | | - | 5 | 144 | 56 | 28 | 20 | | | 00.7s | 27 | 1458 | SC | 0 | 20 | 18 | | _ | | 154 | 45 | 29 | | | ABG = ALIBAG | CZT = PORT ALFRED | HON = HONOLULU | PMG = PORT MORESBY | |------------------------|------------------------|-------------------------|--------------------| | AMS = MARTIN DE VIVIES | DRV = DUMONT D'URVILLE | HYB = HYDERABAD | PND = PONDICHERRY | | ANN = ANNAMALAINAGAR | ETT = ETAIYAPURAM | JAI = JAIPUR | SHL = SHILLONG | | BJI = BEIJING | GNA = GNANGARA | KRC = KARACHI | SIT = SITKA | | CAN = CANBERRA | GUA = GUAM | NGP = NAGPUR | TIR = TIRUNELVELI | | CMO = COLLEGE | HER = HERMANUS | PAF = PORT AUX FRANCAIS | UJJ = UJJAIN | # MAGNETIC STORM SUDDEN COMMENCEMENTS AND SOLAR FLARE EFFECTS (PRELIMINARY REPORT ON RAPID MAGNETIC VARIATIONS) #### **MAY 2001** | Storm Sudden Commencements (SSC) Solar Flare Effects (sfe) | | | | | | | | |-------------------------------------------------------------|------|----------------------------------------|-----|-----------|----------------|--|--| | Day | Time | Quality: Station Group* | Day | Begin-End | Station(s) | | | | 27 | 1459 | A: VAL* CLF* HRB NAG* SPT* GUI GNA CNB | 06 | 0643-0655 | NAG | | | | | | B: NGK* BDV* EBR* | 18 | 1346-1358 | GUI (si: HRB) | | | | | | C: GCK | 20 | 0602-0610 | MMB+ KAK+ KNY+ | | | # REPORTING OBSERVATORIES (up to the 2nd of July 2001): NUR NGK VAL BDV CLF HRB NAG GCK MMB EBR SPT KAK KNY GUI GNA HER CNB Three-letter codes identify each observatory. Reporting stations have been grouped by the character of the observed event. The letter A means very remarkable; B means fair, but unmistakable; C means very poor, doubtful; and - means no quality figure given. The \* means that the SSC, at least in one component, was preceded by a small reversed impulse. SSCs are given only when five or more stations report the event. SFEs include all reports. If an SFE is confirmed by solar or ionospheric events, the name of the station is identified with a plus sign (+). ## Storm Sudden Commencements (SSC) and Sunspot Numbers (SSN)